Abstract

The efficiency of the transmission of surface plasmon waves by use of a dielectric diffraction grating is discussed. The Kretschmann device allows us to obtain a surface plasmon resonance that consists of an absorption peak in the reflection spectrum. When surface plasmon resonance occurs, the TM-polarization mode of the incident electromagnetic wave is neither transmitted nor reflected. The procedure to transform an absorption peak into a transmission peak is described. Transmittivity of 68% is obtained for a simple structure that consists of a thin-film layer of Ag coated on a volume diffraction grating and embedded between two dielectric media. The results presented herein were obtained by numerical simulations that were carried out by use of an algorithm based on the rigorous coupled-wave theory.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. H. Kano, S. Kuwata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33, 5166–5170 (1994).
    [CrossRef] [PubMed]
  3. Q. Chen, X. Sun, I. R. Coddington, D. A. Goetz, H. J. Simon, “Reflected second-harmonic generation with coupled surface-plasmon modes in Ag/liquid/Ag layers,” J. Opt. Soc. Am. B 16, 971–975 (1999).
    [CrossRef]
  4. H. Kano, S. Kuwata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21, 1848–1850 (1996).
    [CrossRef] [PubMed]
  5. K. Matsubara, S. Kawata, S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27, 1160–1163 (1988).
    [CrossRef] [PubMed]
  6. J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
    [CrossRef] [PubMed]
  7. B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature. 332, 615–617 (1988).
    [CrossRef]
  8. T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
    [CrossRef]
  9. B. G. Tilkens, Y. F. Lion, Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39, 363–373 (2000).
    [CrossRef]
  10. I. Avrutsky, Y. Zhao, V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000).
    [CrossRef]
  11. U. Schröter, D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann–Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
    [CrossRef]
  12. B. Rothenhäusler, W. Knoll, “Total internal diffraction of plasmon surface polaritons,” Appl. Phys. Lett. 51, 783–785 (1987).
    [CrossRef]
  13. S. Park, G. Lee, S. H. Song, C. H. Oh, R. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Opt. Lett. 28, 1870–1872 (2003).
    [CrossRef] [PubMed]
  14. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  15. P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization.” J. Opt. Soc. Am. A 13, 779–782 (1996).
    [CrossRef]
  16. A. Otto, “Surface polariton resonance in attenuated total reflection,” in Polaritons. E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 117–121.
  17. B. Fischer, I. L. Tyler, R. J. Bell, “Studies of surface polaritons,” in Polaritons, E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 123–126.
  18. S. Huard, Polarisation de la lumire (Masson, 1994).
  19. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics (Wiley, 1991).
    [CrossRef]

2003

2000

B. G. Tilkens, Y. F. Lion, Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39, 363–373 (2000).
[CrossRef]

I. Avrutsky, Y. Zhao, V. Kochergin, “Surface-plasmon-assisted resonant tunneling of light through a periodically corrugated thin metal film,” Opt. Lett. 25, 595–597 (2000).
[CrossRef]

1999

Q. Chen, X. Sun, I. R. Coddington, D. A. Goetz, H. J. Simon, “Reflected second-harmonic generation with coupled surface-plasmon modes in Ag/liquid/Ag layers,” J. Opt. Soc. Am. B 16, 971–975 (1999).
[CrossRef]

U. Schröter, D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann–Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

1996

1994

1992

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

1991

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

1988

1987

B. Rothenhäusler, W. Knoll, “Total internal diffraction of plasmon surface polaritons,” Appl. Phys. Lett. 51, 783–785 (1987).
[CrossRef]

1981

Attridge, J. W.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Avrutsky, I.

Bell, R. J.

B. Fischer, I. L. Tyler, R. J. Bell, “Studies of surface polaritons,” in Polaritons, E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 123–126.

Chen, Q.

Coddington, I. R.

Daniels, P. B.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Davidson, G. P.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Deacon, J. K.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Fischer, B.

B. Fischer, I. L. Tyler, R. J. Bell, “Studies of surface polaritons,” in Polaritons, E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 123–126.

Gaylord, T. K.

Goetz, D. A.

Heitmann, D.

U. Schröter, D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann–Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Huard, S.

S. Huard, Polarisation de la lumire (Masson, 1994).

Kano, H.

Kawata, S.

Kim, R. S.

Knoll, W.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature. 332, 615–617 (1988).
[CrossRef]

B. Rothenhäusler, W. Knoll, “Total internal diffraction of plasmon surface polaritons,” Appl. Phys. Lett. 51, 783–785 (1987).
[CrossRef]

Kochergin, V.

Kuwata, S.

Lalanne, P.

Lee, G.

Lion, Y. F.

B. G. Tilkens, Y. F. Lion, Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39, 363–373 (2000).
[CrossRef]

Matsubara, K.

Minami, S.

Moharam, M. G.

Morris, G. M.

Oh, C. H.

Okamoto, T.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Otto, A.

A. Otto, “Surface polariton resonance in attenuated total reflection,” in Polaritons. E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 117–121.

Park, S.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Renotte, Y. L.

B. G. Tilkens, Y. F. Lion, Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39, 363–373 (2000).
[CrossRef]

Robinson, G. A.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

Rothenhäusler, B.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature. 332, 615–617 (1988).
[CrossRef]

B. Rothenhäusler, W. Knoll, “Total internal diffraction of plasmon surface polaritons,” Appl. Phys. Lett. 51, 783–785 (1987).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics (Wiley, 1991).
[CrossRef]

Schröter, U.

U. Schröter, D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann–Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Simon, H. J.

Song, S. H.

Sun, X.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics (Wiley, 1991).
[CrossRef]

Tilkens, B. G.

B. G. Tilkens, Y. F. Lion, Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39, 363–373 (2000).
[CrossRef]

Tyler, I. L.

B. Fischer, I. L. Tyler, R. J. Bell, “Studies of surface polaritons,” in Polaritons, E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 123–126.

Yamaguchi, I.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Zhao, Y.

Appl. Opt.

Appl. Phys. Lett.

B. Rothenhäusler, W. Knoll, “Total internal diffraction of plasmon surface polaritons,” Appl. Phys. Lett. 51, 783–785 (1987).
[CrossRef]

Biosens. Bioelectron.

J. W. Attridge, P. B. Daniels, J. K. Deacon, G. A. Robinson, G. P. Davidson, “Sensitivity enhancement of optical immunosensors by the use of a surface plasmon resonance fluoroimmunoassay,” Biosens. Bioelectron. 6, 201–214 (1991).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature.

B. Rothenhäusler, W. Knoll, “Surface-plasmon microscopy,” Nature. 332, 615–617 (1988).
[CrossRef]

Opt. Commun.

T. Okamoto, I. Yamaguchi, “Surface plasmon microscopy with an electronic angular scanning,” Opt. Commun. 93, 265–270 (1992).
[CrossRef]

Opt. Eng.

B. G. Tilkens, Y. F. Lion, Y. L. Renotte, “Uncertainties in the values obtained by surface plasmon resonance,” Opt. Eng. 39, 363–373 (2000).
[CrossRef]

Opt. Lett.

Phys. Rev. B

U. Schröter, D. Heitmann, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann–Raether configuration,” Phys. Rev. B 60, 4992–4999 (1999).
[CrossRef]

Other

A. Otto, “Surface polariton resonance in attenuated total reflection,” in Polaritons. E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 117–121.

B. Fischer, I. L. Tyler, R. J. Bell, “Studies of surface polaritons,” in Polaritons, E. Burstein, F. DeMartini, eds. (Pergamon, 1972), pp. 123–126.

S. Huard, Polarisation de la lumire (Masson, 1994).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics, (Wiley Series in Pure and Applied Optics (Wiley, 1991).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the Kretschmann device.

Fig. 2
Fig. 2

Simulated reflection and transmission curves of the Kretschmann setup for the TM-polarization mode. The simulation parameters are ∊I = 3.19 (LaSFN21), ∊m = −18 + i0.5 (Ag), ∊III = 1, d = 54.7 nm, and λ0 = 632.8 nm. The SPR occurs for as 35.2° angle of incidence in medium I.

Fig. 3
Fig. 3

Amplitude distribution in arbitrary units of the electromagnetic field under resonance in the Kretschmann configuration for the TM-polarization mode. The resonance occurs for a 35.2° angle of incidence in medium I. The figure at right shows the two-dimensional field amplitude through the setup. The simulation parameters are identical to those of Fig. 2 with θ = 35.2° in medium I.

Fig. 4
Fig. 4

Schematic of the studied setup that consists of the Kretschmann configuration in which a waveguide grating is added between the metallic layer and the emergent medium.

Fig. 5
Fig. 5

Influence of the thickness of the waveguide layer on the reflectivity of the component. The permittivity of the waveguide is ∊wg = 3.55 and the angle of incidence is θ = 35.2° in medium I. The other simulation parameters are those of Fig. 2.

Fig. 6
Fig. 6

Numerical computation of the reflectivity of the component for different thicknesses of the waveguide. The first peak is a superposition of the three curves and corresponds to the SPR. The simulation parameters are those of Fig. 2 with ∊wg = 3.55.

Fig. 7
Fig. 7

Amplitude distribution in arbitrary units of the electromagnetic field under resonance in the setup composed of the Kretschmann configuration and a waveguide. The resonance occurs for a 35.2° angle of incidence in medium I. The simulation parameters are those of Fig. 6 with dwg = 198.7 nm and λ = 632.8 nm.

Fig. 8
Fig. 8

Influence of the period of the grating on the transmittivity of the −1 diffraction order at the resonance wavelength of λ0 = 632.8 nm, and for a 35.2° angle of incidence in medium I. The simulation parameters are ∊I = 3.19, ∊m = −18 + i0.5 (Ag), d = 54.7 nm, ∊H = 4, ∊L = 3.19, dwg = 198.7 nm, and f = 0.5, ∊III = 1.

Fig. 9
Fig. 9

Influence of the thickness of the metallic layer on the reflectivity of the device. The gray curve represents the reflectivity of the device with a metallic layer of thickness d = 54.7 nm and the dark curve with a thickness of d = 41.2 nm. The simulation parameters are those of Fig. 8 with Λ = 893 nm.

Fig. 10
Fig. 10

Numerical simulation of the filter response. The gray curve represents the reflectivity and the dark curve represents the transmittivity of the final component. The transmittivity reaches 68% for the Fig. 4 structure with the following parameters: ∊I = 3.19, ∊m = −18 + i0.5, d = 41.2 nm, ∊H = 4, ∊L = 3.19, Λ = 893 nm, dwg = 198.7 nm, ∊III = 1, λ0 = 632.8 nm, and θ = 35.25°.

Tables (1)

Tables Icon

Table 1 Comparison of the Resonance Peaks of the Kretschmann Setup and the Transmission Filter

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r i ,             r > III .
k x p = ω c ( j m j + m ) 1 / 2 .
k x inc = 2 π λ 0 I sin θ ,
k x inc = k x p .
θ c = arcsin ( III I ) .
β m = w g k 0 sin θ m = k x , m p ,
1 w g = 1 2 ( 1 H + 1 L ) .

Metrics