Abstract

We report on the optimization of film thicknesses in a multilayered medium to increase readout signal intensity. The multilayered medium consists of a stack of photosensitive and transparent films, arranged alternately. The thicknesses of the photosensitive and transparent films in the multilayered medium were optimized for a reflection confocal system to read out data by analyzing the propagation of light focused into a multilayered medium.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  2. D. A. Parthenopoulos, P. M. Rentzepis, “Two-photon volume information storage in doped polymer systems,” J. Appl. Phys. 68, 5814–5818 (1990).
    [CrossRef]
  3. A. S. Dvornikov, P. M. Rentzepis, “Novel organic ROM materials for optical 3D memory devices,” Opt. Commun. 136, 1–6 (1997).
    [CrossRef]
  4. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  5. S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993).
    [CrossRef]
  6. Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
    [CrossRef]
  7. M. Gu, D. Day, “Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer,” Opt. Lett. 24, 288–300 (1999).
    [CrossRef]
  8. S. Kawata, Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
    [CrossRef]
  9. A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998).
    [CrossRef]
  10. M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 23, 1781–1783 (1998).
    [CrossRef]
  11. M. Nakano, Y. Kawata, “Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser,” Opt. Lett. 28, 1356–1358 (2003).
    [CrossRef] [PubMed]
  12. M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
    [CrossRef]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  14. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).
  15. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  16. P. Török, T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997).
    [CrossRef]
  17. M. J. Booth, T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200, 68–74 (2000).
    [CrossRef] [PubMed]
  18. M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
    [CrossRef]
  19. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002).
    [CrossRef] [PubMed]
  20. T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999).
    [CrossRef]

2004 (1)

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (2)

M. J. Booth, T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200, 68–74 (2000).
[CrossRef] [PubMed]

S. Kawata, Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

1999 (2)

M. Gu, D. Day, “Use of continuous-wave illumination for two-photon three-dimensional optical bit data storage in a photobleaching polymer,” Opt. Lett. 24, 288–300 (1999).
[CrossRef]

T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999).
[CrossRef]

1998 (4)

1997 (2)

P. Török, T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997).
[CrossRef]

A. S. Dvornikov, P. M. Rentzepis, “Novel organic ROM materials for optical 3D memory devices,” Opt. Commun. 136, 1–6 (1997).
[CrossRef]

1991 (1)

1990 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Two-photon volume information storage in doped polymer systems,” J. Appl. Phys. 68, 5814–5818 (1990).
[CrossRef]

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Booth, M. J.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

M. J. Booth, T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200, 68–74 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).

Day, D.

Dvornikov, A. S.

A. S. Dvornikov, P. M. Rentzepis, “Novel organic ROM materials for optical 3D memory devices,” Opt. Commun. 136, 1–6 (1997).
[CrossRef]

Egami, C.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 23, 1781–1783 (1998).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Gu, M.

Hashimoto, Y.

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Ishikawa, M.

Ishitobi, H.

Juškaitis, R.

Kawata, S.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

S. Kawata, Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

A. Toriumi, S. Kawata, M. Gu, “Reflection confocal microscope readout system for three-dimensional photochromic optical data storage,” Opt. Lett. 23, 1924–1926 (1998).
[CrossRef]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Kawata, Y.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

M. Nakano, Y. Kawata, “Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser,” Opt. Lett. 28, 1356–1358 (2003).
[CrossRef] [PubMed]

S. Kawata, Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

Y. Kawata, H. Ishitobi, S. Kawata, “Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory,” Opt. Lett. 23, 756–758 (1998).
[CrossRef]

M. Ishikawa, Y. Kawata, C. Egami, O. Sugihara, N. Okamoto, “Reflection-type confocal readout for multilayered optical memory,” Opt. Lett. 23, 1781–1783 (1998).
[CrossRef]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Kooriya, T.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

Kuragaito, T.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

Luo, H.

T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999).
[CrossRef]

Milster, T. D.

T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999).
[CrossRef]

Nakano, M.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

M. Nakano, Y. Kawata, “Compact confocal readout system for three-dimensional memories using a laser-feedback semiconductor laser,” Opt. Lett. 28, 1356–1358 (2003).
[CrossRef] [PubMed]

Neil, M. A. A.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Okamoto, N.

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Two-photon volume information storage in doped polymer systems,” J. Appl. Phys. 68, 5814–5818 (1990).
[CrossRef]

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Rentzepis, P. M.

A. S. Dvornikov, P. M. Rentzepis, “Novel organic ROM materials for optical 3D memory devices,” Opt. Commun. 136, 1–6 (1997).
[CrossRef]

D. A. Parthenopoulos, P. M. Rentzepis, “Two-photon volume information storage in doped polymer systems,” J. Appl. Phys. 68, 5814–5818 (1990).
[CrossRef]

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Strickler, J. H.

Sugihara, O.

Tanaka, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

Toriumi, A.

Török, P.

P. Török, T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997).
[CrossRef]

Tsuchimori, M.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

Upton, R. S.

T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999).
[CrossRef]

Watanabe, O.

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

Webb, W. W.

Wilson, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, S. Kawata, “Active aberration correction for the writing of three-dimensional optical memory devices,” Appl. Opt. 41, 1374–1379 (2002).
[CrossRef] [PubMed]

M. J. Booth, T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200, 68–74 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

P. Török, T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997).
[CrossRef]

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Nakano, T. Kooriya, T. Kuragaito, C. Egami, Y. Kawata, M. Tsuchimori, O. Watanabe, “Three-dimensional patterned media for ultrahigh-density optical memory,” Appl. Phys. Lett. 82, 176–178 (2004).
[CrossRef]

Chem. Rev. (1)

S. Kawata, Y. Kawata, “Three-dimensional optical data storage using photochromic materials,” Chem. Rev. 100, 1777–1788 (2000).
[CrossRef]

J. Appl. Phys. (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Two-photon volume information storage in doped polymer systems,” J. Appl. Phys. 68, 5814–5818 (1990).
[CrossRef]

J. Microsc. (2)

M. J. Booth, T. Wilson, “Strategies for the compensation of specimen-induced spherical aberration in confocal microscopy of skin,” J. Microsc. 200, 68–74 (2000).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc. 192, 90–98 (1998).
[CrossRef]

Opt. Commun. (2)

A. S. Dvornikov, P. M. Rentzepis, “Novel organic ROM materials for optical 3D memory devices,” Opt. Commun. 136, 1–6 (1997).
[CrossRef]

P. Török, T. Wilson, “Rigorous theory for axial resolution in confocal microscopes,” Opt. Commun. 137, 127–135 (1997).
[CrossRef]

Opt. Eng. (1)

T. D. Milster, R. S. Upton, H. Luo, “Objective lens design for multiple-layer optical data storage,” Opt. Eng. 38, 295–301 (1999).
[CrossRef]

Opt. Lett. (6)

Science (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other (4)

S. Kawata, T. Tanaka, Y. Hashimoto, Y. Kawata, “Three-dimensional confocal optical memory using photorefractive materials,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 314–325 (1993).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980).

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Proposed model for the analysis of the electromagnetic field in the multilayered medium.

Fig. 2
Fig. 2

Optimization of thickness of the photosensitive film: (a) analysis model, (b) axial response for various thicknesses of the photosensitive film, (c) axial response of the medium for optimized thickness of the photosensitive film.

Fig. 3
Fig. 3

Evaluation of optimum thickness of the transparent films: (a) analysis model, (b) axial response for various thicknesses of the transparent films, and axial responses of the mediums for transparent film thickness of (c) 1.20λ and (d) 1.74λ.

Fig. 4
Fig. 4

Optimum thicknesses in a multilayered medium for lenses of various NAs: (a) photosensitive layers, (b) transparent layers.

Fig. 5
Fig. 5

Axial response of the multilayered media after an increase of the refractive index of the photosensitive films. The refractive index was increased in the (a) first layer, (b) fifth layer, (c) tenth layer, and (d) third and fourth layers. The increase of the refractive index is 0.10.

Tables (1)

Tables Icon

Table 1 Enhancement of Signal in the Recorded Layers

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E i ( z i ) = a i exp ( j k z i z i ) + b i exp ( - j k z i z i ) ,
H i ( z i ) = n i ( 0 / μ 0 ) 1 / 2 [ a i exp ( j k z i z i ) - b i exp ( - j k z i z i ) ] ,
E i ( z i ) = g i [ a i exp ( j k z i z i ) + b i exp ( - j k z i z i ) ] ,
H i ( z i ) = h i [ a i exp ( j k z i z i ) - b i exp ( - j k z i z i ) ] ,
g i = 1 ,             h i = n i cos θ i 0 μ 0             ( s polarization ) ,
g i = cos θ i ,             h i = n i 0 μ 0             ( p polarization ) .
[ E i - 1 ( z i - 1 ) H i - 1 ( z i - 1 ) ] = K i [ E i ( z i ) H i ( z i ) ] ,
K i = [ cos δ i - j g i h i sin δ i - j h i g i sin δ i cos δ i ] ,
[ E 0 ( z 0 ) H 0 ( z 0 ) ] = K 1 K 2 K N - 2 [ E N - 2 ( z N - 2 ) H N - 2 ( z N - 2 ) ] .
K 1 K 2 K N - 2 = [ m 11 m 12 m 21 m 22 ] ,
R = ( m 11 g N - 1 + m 12 h N - 1 ) h 0 - ( m 21 g N - 1 + m 22 h N - 1 ) g 0 ( m 11 g N - 1 + m 12 h N - 1 ) h 0 + ( m 21 g N - 1 + m 22 h N - 1 ) g 0 .
I ( r ) = | 2 π n λ f 0 A P ( r ) J 0 ( 2 π n r r λ f ) r d r | 4 ,

Metrics