Abstract

The submillimeter wave or terahertz (THz) band (1 mm–100 μm) is one of the last unexplored frontiers in the electromagnetic spectrum. A major stumbling block hampering instrument deployment in this frequency regime is the lack of a low-loss guiding structure equivalent to the optical fiber that is so prevalent at the visible wavelengths. The presence of strong inherent vibrational absorption bands in solids and the high skin-depth losses of conductors make the traditional microstripline circuits, conventional dielectric lines, or metallic waveguides, which are common at microwave frequencies, much too lossy to be used in the THz bands. Even the modern surface plasmon polariton waveguides are much too lossy for long-distance transmission in the THz bands. We describe a concept for overcoming this drawback and describe a new family of ultra-low-loss ribbon-based guide structures and matching components for propagating single-mode THz signals. For straight runs this ribbon-based waveguide can provide an attenuation constant that is more than 100 times less than that of a conventional dielectric or metallic waveguide. Problems dealing with efficient coupling of power into and out of the ribbon guide, achieving low-loss bends and branches, and forming THz circuit elements are discussed in detail. One notes that active circuit elements can be integrated directly onto the ribbon structure (when it is made with semiconductor material) and that the absence of metallic structures in the ribbon guide provides the possibility of high-power carrying capability. It thus appears that this ribbon-based dielectric waveguide and associated components can be used as fundamental building blocks for a new generation of ultra-high-speed electronic integrated circuits or THz interconnects.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mullins, “Using unusable frequencies,” IEEE Spectrum 39, 22–23 (2002).
    [CrossRef]
  2. D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photon. News 14, 48–53 (2003).
    [CrossRef]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. MTT-50, 910–928 (2002).
    [CrossRef]
  4. M. N. Afsar, K. J. Button, “Millimeter-wave dielectric measurements of materials,” Proc. IEEE 73, 131–153 (1985).
    [CrossRef]
  5. R. Birch, J. D. Dromey, J. Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225–228 (1981).
    [CrossRef]
  6. M. N. Afsar, “Precision dielectric measurements of nonpolar polymers in the millimeter wavelength range,” IEEE Trans. Microwave Theory Tech. MTT-33, 1410–1415 (1985).
    [CrossRef]
  7. J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
    [CrossRef]
  8. K. C. Kao, G. A. Hockman, “Dielectric fiber surface waveguides for optical frequencies,” IEE Proc. Optoelectron. 133, 1151–1158 (1966).
  9. G. P. Agrawal, Fiber Optic Communication Systems, Wiley Series in Microwave and Optical Engineering (Wiley, New York, 1997).
  10. D. Marcuse, Light Transmission Optics (Van Nostrand-Reinhold, New York, 1972).
  11. S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (Wiley, New York, 1984).
  12. S. K. Koul, Millimeter Wave and Optical Dielectric Integrated Guides and Circuits, (Wiley Series in Microwave and Optical Engineering, (Wiley, New York, 1997).
  13. T. C. Edwards, Foundations for Microstrip Circuit Design (Wiley, New York, 1981).
  14. G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
    [CrossRef]
  15. J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, J.-L. Coutaz, “Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy,” Appl. Opt. 41, 6507–6513 (2002).
    [CrossRef] [PubMed]
  16. G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
    [CrossRef] [PubMed]
  17. R. Mendis, D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
    [CrossRef]
  18. K. Wang, D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
    [CrossRef] [PubMed]
  19. C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
    [CrossRef] [PubMed]
  20. C. Yeh, “Dynamic Fields,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972).
  21. C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33, 3235–3243 (1962).
    [CrossRef]
  22. C. Yeh, “Attenuation in a dielectric elliptical cylinder,” IEEE Trans. Antennas Propag. AP-11, 177–184 (1963).
  23. C. Yeh, K. Ha, S. B. Dong, W. P. Brown, “Single-mode optical waveguides,” Appl. Opt. 18, 1490–1504 (1979).
    [CrossRef] [PubMed]
  24. A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  25. C. Yeh, L. Casperson, B. Szejn, “Propagation of truncated Gaussian beams in multimode fiber guides,” J. Opt. Soc. Am. 68, 989–993 (1978).
    [CrossRef]
  26. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  27. QuickWave-3D FDTD Software, QWED Sp.z o.o., ul. Zwyciezcow 3 4/2, 03-938 Warszawa, Poland.
  28. W. Schlosser, H. G. Unger, “Partially filled waveguides and surface waveguides in rectangular cross section,” in Advances in Microwaves, L. Young, ed. (Academic, New York, 1966).
  29. P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.
  30. J. K. Carson, S. P. Mead, S. A. Schelkunoff, “Cylindrical dielectric waveguide,” Bell Syst. Tech. J. 15, 310 (1936).
    [CrossRef]

2004 (1)

K. Wang, D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

2003 (1)

D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photon. News 14, 48–53 (2003).
[CrossRef]

2002 (4)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. MTT-50, 910–928 (2002).
[CrossRef]

J. Mullins, “Using unusable frequencies,” IEEE Spectrum 39, 22–23 (2002).
[CrossRef]

J.-F. Roux, F. Aquistapace, F. Garet, L. Duvillaret, J.-L. Coutaz, “Grating-assisted coupling of terahertz waves into a dielectric waveguide studied by terahertz time-domain spectroscopy,” Appl. Opt. 41, 6507–6513 (2002).
[CrossRef] [PubMed]

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

2000 (3)

R. Mendis, D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

1996 (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

1985 (2)

M. N. Afsar, “Precision dielectric measurements of nonpolar polymers in the millimeter wavelength range,” IEEE Trans. Microwave Theory Tech. MTT-33, 1410–1415 (1985).
[CrossRef]

M. N. Afsar, K. J. Button, “Millimeter-wave dielectric measurements of materials,” Proc. IEEE 73, 131–153 (1985).
[CrossRef]

1981 (1)

R. Birch, J. D. Dromey, J. Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

1979 (1)

1978 (1)

1966 (2)

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

K. C. Kao, G. A. Hockman, “Dielectric fiber surface waveguides for optical frequencies,” IEE Proc. Optoelectron. 133, 1151–1158 (1966).

1963 (1)

C. Yeh, “Attenuation in a dielectric elliptical cylinder,” IEEE Trans. Antennas Propag. AP-11, 177–184 (1963).

1962 (1)

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33, 3235–3243 (1962).
[CrossRef]

1936 (1)

J. K. Carson, S. P. Mead, S. A. Schelkunoff, “Cylindrical dielectric waveguide,” Bell Syst. Tech. J. 15, 310 (1936).
[CrossRef]

Afsar, M. N.

M. N. Afsar, K. J. Button, “Millimeter-wave dielectric measurements of materials,” Proc. IEEE 73, 131–153 (1985).
[CrossRef]

M. N. Afsar, “Precision dielectric measurements of nonpolar polymers in the millimeter wavelength range,” IEEE Trans. Microwave Theory Tech. MTT-33, 1410–1415 (1985).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber Optic Communication Systems, Wiley Series in Microwave and Optical Engineering (Wiley, New York, 1997).

Aquistapace, F.

Birch, R.

R. Birch, J. D. Dromey, J. Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Brown, W. P.

Button, K. J.

M. N. Afsar, K. J. Button, “Millimeter-wave dielectric measurements of materials,” Proc. IEEE 73, 131–153 (1985).
[CrossRef]

Carr, G. L.

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

Carson, J. K.

J. K. Carson, S. P. Mead, S. A. Schelkunoff, “Cylindrical dielectric waveguide,” Bell Syst. Tech. J. 15, 310 (1936).
[CrossRef]

Casperson, L.

Coutaz, J.-L.

Dong, S. B.

Dromey, J. D.

R. Birch, J. D. Dromey, J. Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Duvillaret, L.

Edwards, T. C.

T. C. Edwards, Foundations for Microstrip Circuit Design (Wiley, New York, 1981).

Fraser, S. E.

P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.

Gallot, G.

Garet, F.

Grischkowsky, D.

G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000).
[CrossRef]

R. Mendis, D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Grundfest, W.

P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.

Ha, K.

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Hockman, G. A.

K. C. Kao, G. A. Hockman, “Dielectric fiber surface waveguides for optical frequencies,” IEE Proc. Optoelectron. 133, 1151–1158 (1966).

Imbriale, W.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

Jamison, S. P.

Jamnejad, V.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

Jordan, K.

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

Kao, K. C.

K. C. Kao, G. A. Hockman, “Dielectric fiber surface waveguides for optical frequencies,” IEE Proc. Optoelectron. 133, 1151–1158 (1966).

Koul, S. K.

S. K. Koul, Millimeter Wave and Optical Dielectric Integrated Guides and Circuits, (Wiley Series in Microwave and Optical Engineering, (Wiley, New York, 1997).

Lamb, J. W.

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

Lisurf, J.

R. Birch, J. D. Dromey, J. Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Manshadi, A. F.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, Light Transmission Optics (Van Nostrand-Reinhold, New York, 1972).

Martin, M. C.

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

McGowan, R. W.

McKinney, W. C.

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

Mead, S. P.

J. K. Carson, S. P. Mead, S. A. Schelkunoff, “Cylindrical dielectric waveguide,” Bell Syst. Tech. J. 15, 310 (1936).
[CrossRef]

Mendis, R.

R. Mendis, D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

Mittleman, D. M.

K. Wang, D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Mullins, J.

J. Mullins, “Using unusable frequencies,” IEEE Spectrum 39, 22–23 (2002).
[CrossRef]

Neill, G. R.

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

Ramo, S.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (Wiley, New York, 1984).

Roux, J.-F.

Schelkunoff, S. A.

J. K. Carson, S. P. Mead, S. A. Schelkunoff, “Cylindrical dielectric waveguide,” Bell Syst. Tech. J. 15, 310 (1936).
[CrossRef]

Schlosser, W.

W. Schlosser, H. G. Unger, “Partially filled waveguides and surface waveguides in rectangular cross section,” in Advances in Microwaves, L. Young, ed. (Academic, New York, 1966).

Shimabukuro, F.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. MTT-50, 910–928 (2002).
[CrossRef]

P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.

Stanton, P.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

Szejn, B.

Taflove, A.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Unger, H. G.

W. Schlosser, H. G. Unger, “Partially filled waveguides and surface waveguides in rectangular cross section,” in Advances in Microwaves, L. Young, ed. (Academic, New York, 1966).

van der Weide, D.

D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photon. News 14, 48–53 (2003).
[CrossRef]

Van Duzer, T.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (Wiley, New York, 1984).

Wang, K.

K. Wang, D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Whinnery, J. R.

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (Wiley, New York, 1984).

Williams, G. P.

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

Yeh, C.

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

C. Yeh, K. Ha, S. B. Dong, W. P. Brown, “Single-mode optical waveguides,” Appl. Opt. 18, 1490–1504 (1979).
[CrossRef] [PubMed]

C. Yeh, L. Casperson, B. Szejn, “Propagation of truncated Gaussian beams in multimode fiber guides,” J. Opt. Soc. Am. 68, 989–993 (1978).
[CrossRef]

C. Yeh, “Attenuation in a dielectric elliptical cylinder,” IEEE Trans. Antennas Propag. AP-11, 177–184 (1963).

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33, 3235–3243 (1962).
[CrossRef]

C. Yeh, “Dynamic Fields,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972).

P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.

Appl. Opt. (2)

Bell Syst. Tech. J. (1)

J. K. Carson, S. P. Mead, S. A. Schelkunoff, “Cylindrical dielectric waveguide,” Bell Syst. Tech. J. 15, 310 (1936).
[CrossRef]

IEE Proc. Optoelectron. (1)

K. C. Kao, G. A. Hockman, “Dielectric fiber surface waveguides for optical frequencies,” IEE Proc. Optoelectron. 133, 1151–1158 (1966).

IEEE Spectrum (1)

J. Mullins, “Using unusable frequencies,” IEEE Spectrum 39, 22–23 (2002).
[CrossRef]

IEEE Trans. Antennas Propag. (2)

C. Yeh, “Attenuation in a dielectric elliptical cylinder,” IEEE Trans. Antennas Propag. AP-11, 177–184 (1963).

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).

IEEE Trans. Microwave Theory Tech. (2)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. MTT-50, 910–928 (2002).
[CrossRef]

M. N. Afsar, “Precision dielectric measurements of nonpolar polymers in the millimeter wavelength range,” IEEE Trans. Microwave Theory Tech. MTT-33, 1410–1415 (1985).
[CrossRef]

Infrared Phys. (1)

R. Birch, J. D. Dromey, J. Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225–228 (1981).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared Millim. Waves 17, 1997–2034 (1996).
[CrossRef]

J. Appl. Phys. (2)

R. Mendis, D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000).
[CrossRef]

C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33, 3235–3243 (1962).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nature (3)

K. Wang, D. M. Mittleman, “Metal wires for terahertz waveguiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, A. F. Manshadi, “Communication at millimetre-submillimetre wavelengths using ceramic ribbon,” Nature 404, 584–588 (2000).
[CrossRef] [PubMed]

G. L. Carr, M. C. Martin, W. C. McKinney, K. Jordan, G. R. Neill, G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420, 153–156 (2002).
[CrossRef] [PubMed]

Opt. Photon. News (1)

D. van der Weide, “Applications and outlook for electronic terahertz technology,” Opt. Photon. News 14, 48–53 (2003).
[CrossRef]

Proc. IEEE (1)

M. N. Afsar, K. J. Button, “Millimeter-wave dielectric measurements of materials,” Proc. IEEE 73, 131–153 (1985).
[CrossRef]

Other (10)

G. P. Agrawal, Fiber Optic Communication Systems, Wiley Series in Microwave and Optical Engineering (Wiley, New York, 1997).

D. Marcuse, Light Transmission Optics (Van Nostrand-Reinhold, New York, 1972).

S. Ramo, J. R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics, 2nd ed. (Wiley, New York, 1984).

S. K. Koul, Millimeter Wave and Optical Dielectric Integrated Guides and Circuits, (Wiley Series in Microwave and Optical Engineering, (Wiley, New York, 1997).

T. C. Edwards, Foundations for Microstrip Circuit Design (Wiley, New York, 1981).

C. Yeh, “Dynamic Fields,” in American Institute of Physics Handbook, 3rd ed., D. E. Gray, ed. (McGraw-Hill, New York, 1972).

QuickWave-3D FDTD Software, QWED Sp.z o.o., ul. Zwyciezcow 3 4/2, 03-938 Warszawa, Poland.

W. Schlosser, H. G. Unger, “Partially filled waveguides and surface waveguides in rectangular cross section,” in Advances in Microwaves, L. Young, ed. (Academic, New York, 1966).

P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, F. Shimabukuro, “Flexible Ribbon Guide for In-Vivo and Hand-Held THz Imaging,” proposal to , Technology Development for Biomedical Applications R21, September2003.

A. Taflove, S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Typical performance comparison between several conventional waveguide structures and the high dielectric constant (Si) ribbon waveguide for the frequency range from 30 GHz to 3 THz. Note that the waveguide losses of typical conventional waveguides can be as much as 100 times larger than those of the ribbon waveguide in this spectrum.

Fig. 2
Fig. 2

Longitudinal cross-sectional geometry of a polymer-coated high dielectric constant ribbon. The thickness and the width of the high dielectric constant ribbon are, respectively, approximately 0.0635 λ0 and 0.635 λ0. The thickness of the polymer coating is approximately 0.25 λ0 and the width is approximately 0.635 λ0. The dielectric constant of the ribbon is 10 while that of the polymer is 2.04.

Fig. 3
Fig. 3

Normalized power intensity in a polymer-coated high dielectric constant ribbon supporting the dominant TM-like mode. Three cases are shown. For case (a) the guiding structure is a bare 0.635 λ0 (width) × 0.06235 λ0 (height) high dielectric constant ribbon surrounded by dry air; for case (b) it is the same high dielectric constant ribbon coated on both (height) sides of the ribbon with a layer of Teflon 0.25 λ0 thick; for case (c) it is a plain Teflon ribbon with dimensions of 0.635 λ0 (width) × 0.6235 λ0 (height) surrounded by dry air. Here ɛ2 = 2.06 and ɛ1 = 10 are, respectively, the dielectric constants of Teflon and high dielectric constant material, and λ0 is the free-space wavelength. The distributions of guided power for the three cases are as follows: For case (a) 1.04% is in the high dielectric constant material and 98.96% is in the air region; for case (b) 5.75% is in the high dielectric constant material, 87.8% is in the Teflon material, and 6.45% is in the air region; for case (c) 69.23% is in the Teflon material and 10.77% is in the air region. Note that for case (b) more than 93% of the guided power is contained within the coated waveguide structure.

Fig. 4
Fig. 4

Relative intensity (red is high and blue is low intensity) envelope of the transverse E field in the upper half plane for a Teflon-coated high dielectric constant waveguide. The top row shows the cross-sectional view of the field and the bottom row shows the side view of the field distribution in the direction of propagation. A sketch of the structure is shown in Fig. 2. The high dielectric constant ribbon is 0.6 λ0 wide and 0.06 λ0 thick. In (a) there is no polymer coat, in (b) the Teflon coat is 0.1 λ0 thick, and in (c) the Teflon coat is 0.26 λ0 thick. Note that the field is more confined to the structure for thicker coats.

Fig. 5
Fig. 5

Rectangular metal waveguide to low dielectric constant ribbon waveguide transition.

Fig. 6
Fig. 6

Rectangular metal waveguide to high dielectric constant ribbon waveguide transition.

Fig. 7
Fig. 7

Side view of the top half of transitions from a high dielectric constant ribbon to a polymer-coated high dielectric constant ribbon using a gradual taper. The high dielectric constant ribbon is 0.6 λ0 wide and 0.06 λ0 thick. The polymer is Teflon (0.6 λ0 wide and 0.26 λ0 thick). The transition length is 6 λ0.

Fig. 8
Fig. 8

Side view of the top half of transitions from a high dielectric constant ribbon to a polymer-coated high dielectric constant ribbon using an inverse taper. The high dielectric constant ribbon is 0.6 λ0 wide and 0.06 λ0 thick. The polymer is Teflon (0.6 λ0 wide) and the final coating is 0.26 λ0 thick. The transition length is 6 λ0.

Fig. 9
Fig. 9

For the structure shown in Fig. 7 the FDTD simulation is obtained at 3 THz for the envelope of the transverse E field of the TM-like mode, which propagates from the bare high dielectric constant ribbon through the transition to the coated high dielectric constant waveguide. The direction of propagation is to the right. The color intensity scale shows the relative intensity of the transverse field at the center of the guide. The insertion loss of this transition is 0.3 dB.

Fig. 10
Fig. 10

For the structure shown in Fig. 9, the FDTD simulation is obtained at 3 THz for the envelope of the transverse E field of the TM-like mode that propagates from the bare high dielectric constant ribbon through the transition to the coated high dielectric constant waveguide. The direction of propagation is to the right. The color intensity scale shows the relative intensity of the transverse field at the center of the ribbon guide. The insertion loss of this transition is 0.22 dB.

Fig. 11
Fig. 11

(a) Side view sketch of a step-index transition from high dielectric constant ribbon to a polymer-coated high dielectric constant ribbon. The high dielectric constant ribbon is 0.6 λ0 wide and 0.06 λ0 thick. The top and bottom polymer coats are each 0.6 λ0 wide and 0.26 λ0 thick. (b) Side view of the envelope of the transverse E field for the TM-like mode propagating through the structure shown in (a). The polymer is Teflon. The simulation at 3 THz shows that for this step-index transition there is significant reflection but little radiation loss. This means that the step-index transition can be used to design circuits, such as filters, on the high dielectric constant ribbon waveguide. The insertion radiation loss is around 0.5 dB.

Fig. 12
Fig. 12

Sketch of the butt-jointed transition from microstrip line to polymer-coated high dielectric constant waveguide on a ground plane.

Fig. 13
Fig. 13

Side view of the envelope of the transverse E field for the TM-like mode propagating through the structure shown in Fig. 12. The microstrip line structure is on the left with a 0.22 λ0 thick polyethylene substrate on a ground plane and a 0.32 λ0 wide metal microstrip line conductor. The polymer-coated high dielectric constant ribbon waveguide is on the right, where the ribbon is 0.6 λ0 wide, the high dielectric constant material is 0.03 λ0 thick, and the polymer coat is polyethylene (0.2 λ0 thick) on top of the high dielectric constant material, also placed on the ground plane. The microstrip line is 4 λ0 long and the coated polymer ribbon is 8 λ0 long. The transmission loss from left to right is 0.35 dB.

Fig. 14
Fig. 14

A 90° alumina ribbon bend. The ribbon is 0.6 λ0 wide with a 1 λ0 input and output straight section and a 4 λ0 inside radius bend.

Fig. 15
Fig. 15

Top view of the envelope of the transverse E field for the TM-like mode, just outside the high dielectric constant ribbon, as it propagates around the bend shown in Fig. 14. Almost all of the initial guided wave is lost to radiation.

Fig. 16
Fig. 16

Top view of the envelope of the transverse E field for the TM-like mode, just inside the Teflon–air boundary, for the high dielectric constant ribbon bend shown in Fig. 12 with a Teflon coat (0.26 λ0 thick) on either side of the alumina. Almost all of the initial guided wave is transmitted through the bend. The radiation loss is less than 0.1 dB.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α = 8.686 π ɛ 1 R tan δ 1 λ 0 ,
ɛ 1 R = ɛ 1 A 1 ( E 1 · E 1 * ) d A ( μ / ɛ ) 1 / 2 [ A 1 e z · ( E 1 × H 1 * ) d A + A 0 e z · ( E 0 × H 0 * ) d A ] .

Metrics