Abstract

Widely tunable laser diodes operating at 1520 ≤ λ ≤ 1570 nm are characterized and compared for use as sources for tunable laser diode gas absorption spectroscopy. Three gases, hydrogen cyanide, ammonia, and acetylene, with overlapping absorption features within the 50 nm tuning range of the devices were targeted by use of wavelength modulation spectroscopy with second-harmonic detection. In addition, a method for modulating the laser to improve sensitivity by taking advantage of the unique structure of these devices is reported.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Baer, R. K. Hanson, M. E. Newfield, N. Gopaul, “Multiplexed diode-laser sensor system for simultaneous H2O, O2, and temperature measurements,” Opt. Lett. 19, 1900–1902 (1994).
    [CrossRef]
  2. K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
    [CrossRef]
  3. D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, D. McDonald, “Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photo-acoustic spectroscopy,” Opt. Lett. 29, 1837–1839 (2004).
    [CrossRef] [PubMed]
  4. B. L. Upschulte, D. M. Sonnenfroh, M. G. Allen, “Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection InGaAsP diode laser,” Appl. Opt. 38, 1506–1512 (1999).
    [CrossRef]
  5. R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
    [CrossRef]
  6. R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
    [CrossRef]
  7. R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
    [CrossRef]
  8. H. Sasada, “1.5 μm DFB semiconductor laser spectroscopy of HCN,” Chem. Phys. 88, 767–777 (1988).
    [CrossRef]
  9. W. C. Swann, S. L. Gilbert, “Pressure-induced shift and broadening of 1510–1540 nm acetylene wavelength calibration lines,” J. Opt. Soc. Am. B 17, 1263–1270 (2000).
    [CrossRef]
  10. L. Lundsbergnielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (NH3(N14)) in the near-infrared region, 6400–6900 cm−1,” J. Molecular Spectrosc. 162, 230–245 (1993).
    [CrossRef]
  11. V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
    [CrossRef]
  12. J. Buus, M. C. Amann, D. J. Blumenthal, Tunable Laser Diodes and Related Optical Components (Wiley, 2005).
    [CrossRef]
  13. G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.
  14. M. C. Amann, R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
    [CrossRef]
  15. P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
    [CrossRef]
  16. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).
  17. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection—theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  18. M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
    [CrossRef]
  19. A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
    [CrossRef]

2004 (2)

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, D. McDonald, “Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photo-acoustic spectroscopy,” Opt. Lett. 29, 1837–1839 (2004).
[CrossRef] [PubMed]

2002 (1)

R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
[CrossRef]

2001 (2)

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (1)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

1997 (2)

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

1994 (1)

1993 (2)

L. Lundsbergnielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (NH3(N14)) in the near-infrared region, 6400–6900 cm−1,” J. Molecular Spectrosc. 162, 230–245 (1993).
[CrossRef]

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

1992 (1)

1990 (1)

M. C. Amann, R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

1988 (1)

H. Sasada, “1.5 μm DFB semiconductor laser spectroscopy of HCN,” Chem. Phys. 88, 767–777 (1988).
[CrossRef]

Ahlberg, H.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Allen, M. G.

Amann, M. C.

M. C. Amann, R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

J. Buus, M. C. Amann, D. J. Blumenthal, Tunable Laser Diodes and Related Optical Components (Wiley, 2005).
[CrossRef]

Baer, D. S.

Blumenthal, D. J.

J. Buus, M. C. Amann, D. J. Blumenthal, Tunable Laser Diodes and Related Optical Components (Wiley, 2005).
[CrossRef]

Boylan, K.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

Broberg, B.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Buus, J.

J. Buus, M. C. Amann, D. J. Blumenthal, Tunable Laser Diodes and Related Optical Components (Wiley, 2005).
[CrossRef]

Chapman, W. B.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).

Donegan, J. F.

R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
[CrossRef]

Feller, G. S.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Gilbert, S. L.

Gopaul, N.

Hammerfeldt, S.

G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.

Hanson, R. K.

Hegarty, J.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

Hegelund, F.

L. Lundsbergnielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (NH3(N14)) in the near-infrared region, 6400–6900 cm−1,” J. Molecular Spectrosc. 162, 230–245 (1993).
[CrossRef]

Hojer, S.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Jacquet, J.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

Kosterev, A. A.

Larson, A. P.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Leboudec, P.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Lundqvist, L.

G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.

Lundsbergnielsen, L.

L. Lundsbergnielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (NH3(N14)) in the near-infrared region, 6400–6900 cm−1,” J. Molecular Spectrosc. 162, 230–245 (1993).
[CrossRef]

Lynch, M.

R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
[CrossRef]

Marin, F.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

McDonald, D.

D. Weidmann, A. A. Kosterev, F. K. Tittel, N. Ryan, D. McDonald, “Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photo-acoustic spectroscopy,” Opt. Lett. 29, 1837–1839 (2004).
[CrossRef] [PubMed]

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

Mihalcea, R. M.

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

R. M. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).
[CrossRef]

Monier, M.-H.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Myara, M.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Newfield, M. E.

Nicolaisen, F. M.

L. Lundsbergnielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (NH3(N14)) in the near-infrared region, 6400–6900 cm−1,” J. Molecular Spectrosc. 162, 230–245 (1993).
[CrossRef]

O’Gorman, J.

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

Orsal, B.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Phelan, R.

R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
[CrossRef]

Rigole, P.-J.

G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.

Ryan, N.

Sandstrom, L.

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Sasada, H.

H. Sasada, “1.5 μm DFB semiconductor laser spectroscopy of HCN,” Chem. Phys. 88, 767–777 (1988).
[CrossRef]

Schimpe, R.

M. C. Amann, R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

Signoret, P.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Silver, J. A.

Sonnenfroh, D. M.

Swann, W. C.

Szabo, P.

G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.

Tittel, F. K.

Tourrenc, J.-P.

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

Upschulte, B. L.

Webber, M. E.

M. E. Webber, D. S. Baer, R. K. Hanson, “Ammonia monitoring near 1.5 μm with diode-laser absorption sensors,” Appl. Opt. 40, 2031–2042 (2001).
[CrossRef]

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Weidmann, D.

Weldon, V.

R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
[CrossRef]

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

Wesström, G. S. J.-O.

G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.

Appl. Opt. (4)

Appl. Phys. B (1)

R. M. Mihalcea, M. E. Webber, D. S. Baer, R. K. Hanson, G. S. Feller, W. B. Chapman, “Diode-laser absorption measurements of CO2, H2O, N2O, and NH3near 2.0 μm,” Appl. Phys. B 67, 283–288 (1998).
[CrossRef]

Chem. Phys. (1)

H. Sasada, “1.5 μm DFB semiconductor laser spectroscopy of HCN,” Chem. Phys. 88, 767–777 (1988).
[CrossRef]

Electron. Lett. (2)

R. Phelan, V. Weldon, M. Lynch, J. F. Donegan, “Simultaneous multigas detection with cascaded strongly gain coupled DFB laser by dual wavelength operation,” Electron. Lett. 38, 31–32 (2002).
[CrossRef]

M. C. Amann, R. Schimpe, “Excess linewidth broadening in wavelength-tunable laser diodes,” Electron. Lett. 26, 279–280 (1990).
[CrossRef]

IEE Proc. Optoelectron. (1)

K. Boylan, V. Weldon, D. McDonald, J. O’Gorman, J. Hegarty, “Sampled grating DBR laser as a spectroscopic source in multigas detection at 1.52–1.57 μm,” IEE Proc. Optoelectron. 148, 19–24 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

V. Jayaraman, Z.-M. Chuang, L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Signoret, M. Myara, J.-P. Tourrenc, B. Orsal, M.-H. Monier, J. Jacquet, P. Leboudec, F. Marin, “Bragg section effects on linewidth and lineshape in 1.55 μm DBR tunable laser diodes,” IEEE Photon. Technol. Lett. 16, 1429–1431 (2004).
[CrossRef]

J. Molecular Spectrosc. (1)

L. Lundsbergnielsen, F. Hegelund, F. M. Nicolaisen, “Analysis of the high-resolution spectrum of ammonia (NH3(N14)) in the near-infrared region, 6400–6900 cm−1,” J. Molecular Spectrosc. 162, 230–245 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

A. P. Larson, L. Sandstrom, S. Hojer, H. Ahlberg, B. Broberg, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near-infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Opt. Lett. (2)

Other (3)

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).

J. Buus, M. C. Amann, D. J. Blumenthal, Tunable Laser Diodes and Related Optical Components (Wiley, 2005).
[CrossRef]

G. S. J.-O. Wesström, S. Hammerfeldt, L. Lundqvist, P. Szabo, P.-J. Rigole, “State-of-the-art performance of widely tunable modulated grating Y-branch lasers,” in Optical Fiber Communication Conference (OFC), Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper TuE2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Four-section SG-DBR laser diode consisting of two sampled grating regions, a phase section, and a gain section. The front and back grating sections have different periods.

Fig. 2
Fig. 2

Power reflectivity spectrum of a sampled grating.

Fig. 3
Fig. 3

Top view schematic of the MG-Y laser.10

Fig. 4
Fig. 4

(a) Emission wavelength of the SG-DBR laser as a function of the front and back tuning currents, IF and IB, at fixed phase current IP = 0 mA and active section current IG = 120 mA. (b) Emission wavelength of the MG-Y laser as a function of the left and right tuning currents, IL and IR, at fixed phase current IP = 0 mA and active section current IG = 150 mA.

Fig. 5
Fig. 5

(a) Measured SMSR and emission wavelength for the look-up table generated for the MG-Y laser. (b) Measured SMSR and emission wavelength for the look-up table generated for the SG-DBR laser.

Fig. 6
Fig. 6

Experimental arrangement.

Fig. 7
Fig. 7

High-specificity multispecies gas-sensing-enabling detection of NH3, C2H2, and HCN by tuning of a SG-DBR laser to regions where absorption lines that are due to individual gases are well resolved.

Fig. 8
Fig. 8

High-specificity multispecies gas-sensing-enabling detection of NH3, C2H2, and HCN by tuning of a MG-Y laser to regions where absorption lines that are due to individual gases are well resolved.

Fig. 9
Fig. 9

Measured 1f and 2f absorption signals of a HCN line at 1529.5 nm while (a) gain, (b) phase, and (c) grating sections of a SG-DBR are modulated.

Fig. 10
Fig. 10

Measured 1f and 2f absorption signals of a HCN line at 1529.5 nm while (a) gain, (b) phase, and (c) grating sections of a MG-Y laser are modulated.

Tables (2)

Tables Icon

Table 1 Significant Characteristics of ECL and Monolithic Widely Tunable Lasers Compared and Contrasted for Applications in Multispecies Gas Sensing

Tables Icon

Table 2 Results of Passive Section and Gain Section Modulation for the SG-DBR and MG-Y Lasers

Metrics