Abstract

A new parallel photodisplacement technique has been developed that achieves simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed interferogram, which greatly simplifies the system and the optical alignment. A linear region of photodisplacement is excited on the sample for subsurface imaging by use of a line-focused intensity-modulated laser beam, and the displacement and surface information on reflectivity and topography are detected by a parallel heterodyne interferometer with a charge-coupled device linear image sensor used as a detector. The frequencies of three control signals for excitation and detection, that is, the heterodyne beat signal, modulation signal, and sensor gate pulse, are optimized such that surface and subsurface information components are space-frequency multiplexed into the sensor signal as orthogonal functions, allowing each to be discretely reproduced from Fourier coefficients. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a remarkable speed of only 0.26 s per 256 × 256 pixel area. This new technique is promising for use in nondestructive hybrid surface and subsurface inspection and other applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, New York, 1980), pp. 170–173, 295–296.
  2. Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979).
    [CrossRef]
  3. Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
    [CrossRef]
  4. A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
    [CrossRef]
  5. J. C. Murphy, C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980).
    [CrossRef]
  6. M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–755 (1983).
    [CrossRef]
  7. P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Sci. 20, 659–662 (1979).
    [CrossRef]
  8. A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36, 725–727 (1980).
    [CrossRef]
  9. T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).
  10. S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
    [CrossRef]
  11. N. M. Amer, M. A. Olmstead, “A novel method for the study of optical properties of surfaces,” Surf. Sci. 132, 68–72 (1983).
    [CrossRef]
  12. L. C. M. Miranda, “Photodisplacement spectroscopy of solids: theory,” Appl. Opt. 22, 2882–2886 (1983).
    [CrossRef] [PubMed]
  13. J. -P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metall. Q. 25, 247–252 (1986).
    [CrossRef]
  14. H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990).
    [CrossRef]
  15. N. A. Massie, R. D. Nelson, S. Holly, “High-performance real-time heterodyne interferometry,” Appl. Opt. 18, 1797–1803 (1979).
    [CrossRef] [PubMed]
  16. T. Nakata, H. H. Kobayashi, T. Ninomiya, “Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration,” in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, Tokyo, 1993), pp. 81–82.
  17. T. Nakata, T. Ninomiya, “Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study,” Appl. Opt. 43, 3287–3296 (2004).
    [CrossRef] [PubMed]
  18. T. Nakata, T. Ninomiya, “A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging,” J. Appl. Phys. 96, 6970–6980 (2004).
    [CrossRef]
  19. T. Nakata, T. Ninomiya, “Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry,” J. Appl. Phys. 97, 103110 (2005).
    [CrossRef]
  20. R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), Chap. 10.
  21. Photon Probe, Inc., Frequency Stabilization He-Ne Laser FS-1M, product catalog. (Photon Probe, Tokyo, 2003).
  22. Photon Probe, Inc., Frequency Shifter FS-1S, product catalog. (Photon Probe, Tokyo, 2003).
  23. EG&G Reticon Company, D Series Linear Charge-Coupled Photodiode Array RL02 56D, product catalog. (Reticon, Sunnyvale, Calif., 1987).
  24. Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
    [CrossRef]

2005 (1)

T. Nakata, T. Ninomiya, “Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry,” J. Appl. Phys. 97, 103110 (2005).
[CrossRef]

2004 (2)

T. Nakata, T. Ninomiya, “Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study,” Appl. Opt. 43, 3287–3296 (2004).
[CrossRef] [PubMed]

T. Nakata, T. Ninomiya, “A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging,” J. Appl. Phys. 96, 6970–6980 (2004).
[CrossRef]

1992 (2)

T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

1990 (1)

H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990).
[CrossRef]

1986 (1)

J. -P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metall. Q. 25, 247–252 (1986).
[CrossRef]

1983 (3)

N. M. Amer, M. A. Olmstead, “A novel method for the study of optical properties of surfaces,” Surf. Sci. 132, 68–72 (1983).
[CrossRef]

L. C. M. Miranda, “Photodisplacement spectroscopy of solids: theory,” Appl. Opt. 22, 2882–2886 (1983).
[CrossRef] [PubMed]

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–755 (1983).
[CrossRef]

1981 (1)

S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
[CrossRef]

1980 (3)

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

J. C. Murphy, C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980).
[CrossRef]

A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36, 725–727 (1980).
[CrossRef]

1979 (3)

N. A. Massie, R. D. Nelson, S. Holly, “High-performance real-time heterodyne interferometry,” Appl. Opt. 18, 1797–1803 (1979).
[CrossRef] [PubMed]

Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979).
[CrossRef]

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Sci. 20, 659–662 (1979).
[CrossRef]

1978 (1)

Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[CrossRef]

Aamodt, C.

J. C. Murphy, C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980).
[CrossRef]

Amer, N. M.

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–755 (1983).
[CrossRef]

N. M. Amer, M. A. Olmstead, “A novel method for the study of optical properties of surfaces,” Surf. Sci. 132, 68–72 (1983).
[CrossRef]

Ameri, S.

S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
[CrossRef]

Ash, E. A.

S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
[CrossRef]

Badoz, J.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Boccara, A. C.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), Chap. 10.

Busse, G.

A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36, 725–727 (1980).
[CrossRef]

Fournier, D.

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

Hawkins, G. F.

Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[CrossRef]

Heon, R.

J. -P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metall. Q. 25, 247–252 (1986).
[CrossRef]

Holly, S.

Kanstad, S. O.

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Sci. 20, 659–662 (1979).
[CrossRef]

Kembo, Y.

T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).

Kitamori, T.

T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).

Kobayashi, H. H.

T. Nakata, H. H. Kobayashi, T. Ninomiya, “Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration,” in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, Tokyo, 1993), pp. 81–82.

Koda, T.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

Massie, N. A.

Miranda, L. C. M.

Monchalin, J. -P.

J. -P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metall. Q. 25, 247–252 (1986).
[CrossRef]

Murphy, J. C.

J. C. Murphy, C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980).
[CrossRef]

Muzak, N.

J. -P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metall. Q. 25, 247–252 (1986).
[CrossRef]

Nagata, Y.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

Nakai, Y.

H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990).
[CrossRef]

Nakano, S.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

Nakata, T.

T. Nakata, T. Ninomiya, “Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry,” J. Appl. Phys. 97, 103110 (2005).
[CrossRef]

T. Nakata, T. Ninomiya, “A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging,” J. Appl. Phys. 96, 6970–6980 (2004).
[CrossRef]

T. Nakata, T. Ninomiya, “Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study,” Appl. Opt. 43, 3287–3296 (2004).
[CrossRef] [PubMed]

T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).

T. Nakata, H. H. Kobayashi, T. Ninomiya, “Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration,” in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, Tokyo, 1993), pp. 81–82.

Nelson, R. D.

Neuman, V.

S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
[CrossRef]

Ninomiya, T.

T. Nakata, T. Ninomiya, “Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry,” J. Appl. Phys. 97, 103110 (2005).
[CrossRef]

T. Nakata, T. Ninomiya, “A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging,” J. Appl. Phys. 96, 6970–6980 (2004).
[CrossRef]

T. Nakata, T. Ninomiya, “Practical realization of high-speed photodisplacement imaging by use of parallel excitation and parallel heterodyne detection: a numerical study,” Appl. Opt. 43, 3287–3296 (2004).
[CrossRef] [PubMed]

T. Nakata, H. H. Kobayashi, T. Ninomiya, “Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration,” in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, Tokyo, 1993), pp. 81–82.

Nishimoto, Y.

H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990).
[CrossRef]

Nordal, P. E.

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Sci. 20, 659–662 (1979).
[CrossRef]

Ogiso, H.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–755 (1983).
[CrossRef]

N. M. Amer, M. A. Olmstead, “A novel method for the study of optical properties of surfaces,” Surf. Sci. 132, 68–72 (1983).
[CrossRef]

Petts, C. R.

S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
[CrossRef]

Pouch, J. J.

Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36, 725–727 (1980).
[CrossRef]

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, New York, 1980), pp. 170–173, 295–296.

Sawada, T.

T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).

Takamatsu, H.

H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990).
[CrossRef]

Thomas, R. L.

Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979).
[CrossRef]

Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[CrossRef]

Wong, Y. H.

Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979).
[CrossRef]

Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[CrossRef]

Yamanaka, K.

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (4)

Y. H. Wong, R. L. Thomas, J. J. Pouch, “Subsurface structures of solids by scanning photoacoustic microscopy,” Appl. Phys. Lett. 35, 368–369 (1979).
[CrossRef]

Y. H. Wong, R. L. Thomas, G. F. Hawkins, “Surface and subsurface structure of solids by laser photoacoustic spectroscopy,” Appl. Phys. Lett. 32, 538–539 (1978).
[CrossRef]

A. C. Boccara, D. Fournier, J. Badoz, “Thermo-optical spectroscopy: detection by the ‘mirage effect’,” Appl. Phys. Lett. 36, 130–132 (1980).
[CrossRef]

A. Rosencwaig, G. Busse, “High-resolution photoacoustic thermal-wave microscopy,” Appl. Phys. Lett. 36, 725–727 (1980).
[CrossRef]

Can. Metall. Q. (1)

J. -P. Monchalin, R. Heon, N. Muzak, “Evaluation of ultrasonic inspection procedures by field mapping with an optical probe,” Can. Metall. Q. 25, 247–252 (1986).
[CrossRef]

Electron. Lett. (1)

S. Ameri, E. A. Ash, V. Neuman, C. R. Petts, “Photodisplacement imaging,” Electron. Lett. 17, 337–338 (1981).
[CrossRef]

J. Appl. Phys. (3)

J. C. Murphy, C. Aamodt, “Photothermal spectroscopy using optical beam probing: mirage effect,” J. Appl. Phys. 51, 4580–4588 (1980).
[CrossRef]

T. Nakata, T. Ninomiya, “A charge-coupled-device-based heterodyne technique for parallel photodisplacement imaging,” J. Appl. Phys. 96, 6970–6980 (2004).
[CrossRef]

T. Nakata, T. Ninomiya, “Real-time photodisplacement imaging using parallel excitation and parallel heterodyne interferometry,” J. Appl. Phys. 97, 103110 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. A. Olmstead, N. M. Amer, “A new probe of the optical properties of surfaces,” J. Vac. Sci. Technol. B 1, 751–755 (1983).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Takamatsu, Y. Nishimoto, Y. Nakai, “Photodisplacement measurement by interferometric laser probe,” Jpn. J. Appl. Phys. 29, 2847–2850 (1990).
[CrossRef]

Jpn. J. Appl. Phys. Suppl. (1)

T. Nakata, Y. Kembo, T. Kitamori, T. Sawada, “Detection and imaging of subsurface microcracks in silicon wafers using photoacoustic microscope,” Jpn. J. Appl. Phys. Suppl. 31–1, 46–148 (1992).

Nondestr. Test. Eval. (1)

Y. Nagata, K. Yamanaka, H. Ogiso, S. Nakano, T. Koda, “Characterization of ion implanted silicon and diamond by variable wavelength photoacoustic microscopy and scanning acoustic microscopy,” Nondestr. Test. Eval. 8–9, 1013–1023 (1992).
[CrossRef]

Phys. Sci. (1)

P. E. Nordal, S. O. Kanstad, “Photothermal radiometry,” Phys. Sci. 20, 659–662 (1979).
[CrossRef]

Surf. Sci. (1)

N. M. Amer, M. A. Olmstead, “A novel method for the study of optical properties of surfaces,” Surf. Sci. 132, 68–72 (1983).
[CrossRef]

Other (6)

T. Nakata, H. H. Kobayashi, T. Ninomiya, “Study on high-speed photothermal displacement microscopy using parallel excitation and phase-shifting signal integration,” in Proceedings of 14th Symposium on Ultrasonic Electronics (Japan Society of Applied Physics, Tokyo, 1993), pp. 81–82.

R. N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965), Chap. 10.

Photon Probe, Inc., Frequency Stabilization He-Ne Laser FS-1M, product catalog. (Photon Probe, Tokyo, 2003).

Photon Probe, Inc., Frequency Shifter FS-1S, product catalog. (Photon Probe, Tokyo, 2003).

EG&G Reticon Company, D Series Linear Charge-Coupled Photodiode Array RL02 56D, product catalog. (Reticon, Sunnyvale, Calif., 1987).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley Interscience, New York, 1980), pp. 170–173, 295–296.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Parallel excitation and parallel heterodyne detection.

Fig. 2
Fig. 2

Integration and readout procedure in a CCD sensor.

Fig. 3
Fig. 3

Experimental apparatus for surface and subsurface imaging. Abbreviations are defined in text.

Fig. 4
Fig. 4

Example of parallel extraction and parallel heterodyne detection of photothermal displacement. (a) Aluminum-coated silica plate used as the specimen. (b) Micrograph of line-focused spots of probe beam S superposed upon the excitation beam and reference beam R (top), and micrograph magnifying a 166 μm wide area of the beam spots in the upper image (bottom). (c) Space-frequency multiplexed interferogram (video output signal of the CCD sensor).

Fig. 5
Fig. 5

Example of surface and subsurface images obtained simultaneously for analysis of subsurface lattice defects. (a) Silicon wafer locally implanted with 300 keV Ar+ ions at a dose of 1 × 1015 ions/cm2 used as the subsurface defect sample, (b) reflectivity image, (c) topography image, (d) photodisplacement amplitude image, and (e) photodisplacement phase image.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I ( x , t ) = 2 α I L R s ( x ) + 2 α I L R s ( x ) { cos [ 2 π f B t + ϕ path ( x ) + 4 π n a h ( x ) λ ] + 2 π λ A ( x ) sin [ 2 π ( f B + f E ) t + ϕ path ( x ) + 4 π n a h ( x ) λ + θ ( x ) ] + 2 π λ A ( x ) sin [ 2 π ( f B - f E ) t + ϕ path ( x ) + 4 π n a h ( x ) λ - θ ( x ) ] } ,
f S : f B : f E = 8 p : 8 p u ± 1 : 8 p ( u - s ) 1 ,
S ( m , i ) = 2 α I L R s ( m ) 1 f S + 2 α I L R s ( m ) { 1 π f B sin ( ± π 8 p ) × cos [ ± π 4 p i ± π 8 p + ϕ path ( m ) + 4 π n a h ( m ) λ ] + 2 A ( m ) λ ( f B - f E ) sin ( ± π 4 p ) sin [ ± π 2 p i ± π 4 p + ϕ path ( m ) + 4 π n a h ( m ) λ - θ ( m ) ] } .
D 0 ( m ) = 1 L q = 0 L - 1 S ( m , q ) = 2 α I L R s ( m ) f S ,
E 1 ( m ) = 1 M q = 0 M - 1 ( - 1 ) q S ( m , 4 q ) = 2 α I L R s ( m ) π f B sin ( ± π 8 p ) cos [ ± π 8 p + ϕ path ( m ) + 4 π n a h ( m ) λ ] ,
H 1 ( m ) = - 1 M q = 0 M - 1 ( - 1 ) q S ( m , 4 q + 2 ) = 2 α I L R s ( m ) π f B sin ( ± π 8 p ) sin [ ± π 8 p + ϕ path ( m ) + 4 π n a h ( m ) λ ] ,
E 2 ( m ) = 1 N q = 0 N - 1 ( - 1 ) q S ( m , 2 q + 1 ) = 4 α I L R s ( m ) λ ( f B - f E ) A ( m ) sin ( ± π 4 p ) cos [ ± π 4 p + ϕ path ( m ) + 4 π n a h ( m ) λ - θ ( m ) ] ,
H 2 ( m ) = 1 N q = 0 N - 1 ( - 1 ) q S ( m , 2 q ) = 4 α I L R s ( m ) λ ( f B - f E ) A ( m ) sin ( ± π 4 p ) sin [ ± π 4 p + ϕ path ( m ) + 4 π n a h ( m ) λ - θ ( m ) ] ,
R s ( m ) = f S 2 α I L D 0 ( m ) ,
h ( m ) = λ 4 π n a [ tan - 1 H 1 ( m ) E 1 ( m ) π 8 p - ϕ path ( m ) ] ,
A ( m ) = λ ( f B - f E ) 2 f S sin ( ± π 4 p ) D 0 ( m ) [ E 2 2 ( m ) + H 2 2 ( m ) ] 1 / 2 ,
θ ( m ) = - tan - 1 H 2 ( m ) E 2 ( m ) + tan - 1 H 1 ( m ) E 1 ( m ) ± π 8 p .

Metrics