Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed photodisplacement interferogram

Not Accessible

Your library or personal account may give you access

Abstract

A new parallel photodisplacement technique has been developed that achieves simultaneous real-time imaging of surface and subsurface structures from a single space-frequency multiplexed interferogram, which greatly simplifies the system and the optical alignment. A linear region of photodisplacement is excited on the sample for subsurface imaging by use of a line-focused intensity-modulated laser beam, and the displacement and surface information on reflectivity and topography are detected by a parallel heterodyne interferometer with a charge-coupled device linear image sensor used as a detector. The frequencies of three control signals for excitation and detection, that is, the heterodyne beat signal, modulation signal, and sensor gate pulse, are optimized such that surface and subsurface information components are space-frequency multiplexed into the sensor signal as orthogonal functions, allowing each to be discretely reproduced from Fourier coefficients. Preliminary experiments demonstrate that this technique is capable of simultaneous imaging of reflectivity, topography, and photodisplacement for the detection of subsurface lattice defects at a remarkable speed of only 0.26 s per 256 × 256 pixel area. This new technique is promising for use in nondestructive hybrid surface and subsurface inspection and other applications.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Real-time photodisplacement microscope for high-sensitivity simultaneous surface and subsurface inspection

Toshihiko Nakata, Kazushi Yoshimura, and Takanori Ninomiya
Appl. Opt. 45(12) 2643-2655 (2006)

General solution of undersampling frequency conversion and its optimization for parallel photodisplacement imaging

Toshihiko Nakata and Takanori Ninomiya
Appl. Opt. 45(29) 7579-7589 (2006)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved