Abstract

The width of the depletion region in fused-silica samples thermally poled during various periods of time is investigated experimentally with four previously reported characterization techniques in an attempt to unify their findings. Although all measurements give a similar width of the depletion region, it is shown that the determination of the profile of χ(2) is also required for a good estimate of the nonlinearity induced by poling.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Myers, N. Mukherjee, S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
    [CrossRef] [PubMed]
  2. A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
    [CrossRef]
  3. T. G. Alley, S. R. J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23, 1170–1172 (1998).
    [CrossRef]
  4. D. Faccio, V. Pruneri, P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
    [CrossRef]
  5. D. Pureur, A. C. Liu, M. J. F. Digonnet, G. S. Kino, “Absolute measurement of the second-order nonlinearity profile in poled silica,” Opt. Lett. 23, 588–590 (1998).
    [CrossRef]
  6. D. Faccio, V. Pruneri, P. G. Kazansky, “Noncollinear Maker’s fringe measurements of second-order nonlinear optical layers,” Opt. Lett. 25, 1376–1378 (2000).
    [CrossRef]
  7. H. G. de Chatellus, S. Montant, E. Freysz, “Nondestructive method for characterization of the second-order nonlinear profile and charge distribution in thermally poled fused silica,” Opt. Lett. 25, 1723–1725 (2000).
    [CrossRef]
  8. P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
    [CrossRef]
  9. Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.
  10. A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
    [CrossRef]
  11. T. G. Alley, S. R. J. Brueck, R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
    [CrossRef]
  12. A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
    [CrossRef]
  13. W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
    [CrossRef]

2003 (2)

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

2001 (1)

D. Faccio, V. Pruneri, P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

2000 (3)

1999 (1)

W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

1998 (3)

1996 (1)

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

1991 (1)

Alley, T. G.

T. G. Alley, S. R. J. Brueck, “Visualization of the nonlinear optical space-charge region of bulk thermally poled fused-silica glass,” Opt. Lett. 23, 1170–1172 (1998).
[CrossRef]

T. G. Alley, S. R. J. Brueck, R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

Arentoft, J.

W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

Balestrieri, V.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

Brueck, S. R. J.

Carvalho, H. R.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Carvalho, I. C. S.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

Cordeiro, C. M. B.

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

de Chatellus, H. G.

Digonnet, M. J. F.

Faccio, D.

D. Faccio, V. Pruneri, P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

D. Faccio, V. Pruneri, P. G. Kazansky, “Noncollinear Maker’s fringe measurements of second-order nonlinear optical layers,” Opt. Lett. 25, 1376–1378 (2000).
[CrossRef]

Fischer, R.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Fleming, S.

W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

Freysz, E.

Kazansky, P. G.

D. Faccio, V. Pruneri, P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

D. Faccio, V. Pruneri, P. G. Kazansky, “Noncollinear Maker’s fringe measurements of second-order nonlinear optical layers,” Opt. Lett. 25, 1376–1378 (2000).
[CrossRef]

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Kino, G. S.

Kudlinski, A.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.

Lelek, M.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.

Lesche, B.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

Liu, A. C.

Margulis, W.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

Martinelli, G.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.

Montant, S.

Moreira, M. F.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

Mukherjee, N.

Myers, R. A.

T. G. Alley, S. R. J. Brueck, R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

R. A. Myers, N. Mukherjee, S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica,” Opt. Lett. 16, 1732–1734 (1991).
[CrossRef] [PubMed]

Pruneri, V.

D. Faccio, V. Pruneri, P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

D. Faccio, V. Pruneri, P. G. Kazansky, “Noncollinear Maker’s fringe measurements of second-order nonlinear optical layers,” Opt. Lett. 25, 1376–1378 (2000).
[CrossRef]

Pureur, D.

Quiquempois, Y.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.

Russell, J.

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Sessler, G. M.

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Smith, A. R.

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

St, P.

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Triques, A. L. C.

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

Wong, D.

W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

Xu, W.

W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

Yang, G. M.

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

Zeghlache, H.

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.

Appl. Phys. Lett. (5)

D. Faccio, V. Pruneri, P. G. Kazansky, “Dynamics of the second-order nonlinearity in thermally poled silica glass,” Appl. Phys. Lett. 79, 2687–2689 (2001).
[CrossRef]

A. L. C. Triques, C. M. B. Cordeiro, V. Balestrieri, B. Lesche, W. Margulis, I. C. S. Carvalho, “Depletion region in thermally poled fused silica,” Appl. Phys. Lett. 76, 2496–2498 (2000).
[CrossRef]

P. G. Kazansky, A. R. Smith, P. St, J. Russell, G. M. Yang, G. M. Sessler, “Thermally poled silica glass: laser induced pressure pulse probe of charge distribution,” Appl. Phys. Lett. 68, 269–271 (1996).
[CrossRef]

A. Kudlinski, Y. Quiquempois, M. Lelek, H. Zeghlache, G. Martinelli, “Complete characterization of the nonlinear spatial distribution induced in poled silica glass with a submicron resolution,” Appl. Phys. Lett. 83, 3623–3625 (2003).
[CrossRef]

A. L. C. Triques, I. C. S. Carvalho, M. F. Moreira, H. R. Carvalho, R. Fischer, B. Lesche, W. Margulis, “Time evolution of depletion region in poled silica,” Appl. Phys. Lett. 82, 2948–2950 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Xu, J. Arentoft, D. Wong, S. Fleming, “Evidence of space-charge effects in thermal poling,” IEEE Photon. Technol. Lett. 11, 1265–1267 (1999).
[CrossRef]

J. Non-Cryst. Solids (1)

T. G. Alley, S. R. J. Brueck, R. A. Myers, “Space charge dynamics in thermally poled fused silica,” J. Non-Cryst. Solids 242, 165–176 (1998).
[CrossRef]

Opt. Lett. (5)

Other (1)

Y. Quiquempois, M. Lelek, A. Kudlinski, H. Zeghlache, G. Martinelli, “Nonlinear distribution reconstruction in poled silica glasses with a sub-micron resolution,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, Vol. 93 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), pp. 256–258.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Depletion layer as seen by (a) an optical microscope (poled for 15 min) and (b) an AFM (poled for 20 min) after 30 s etching. The samples were poled in air at 280 °C at 3.5 kV.

Fig. 2
Fig. 2

Width of the depletion region as measured by ■, real-time interferometric etching; ○, optical microscopy; △, Maker fringes; and □, etching with real-time SH monitoring.

Fig. 3
Fig. 3

Amplitudes of nonlinearity with assumptions of w = 5 μm, coherence length 24 μm, incidence angle 60°, and the same total SH level for all χ(2) profiles.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P 2 ω | z = 0 z = χ ( 2 ) ( z ) exp ( i Δ k z / cos θ ) d z | 2 ,

Metrics