Abstract

In earlier work [ J. Opt. Soc. Am. A 21, 13– 23 ( 2004)], we showed that a combination of linear models and optimum Gaussian sensors obtained by an exhaustive search can recover daylight spectra reliably from broadband sensor data. Thus our algorithm and sensors could be used to design an accurate, relatively inexpensive system for spectral imaging of daylight. Here we improve our simulation of the multispectral system by (1) considering the different kinds of noise inherent in electronic devices such as change-coupled devices (CCDs) or complementary metal-oxide semiconductors (CMOS) and (2) extending our research to a different kind of natural illumination, skylight. Because exhaustive searches are expensive computationally, here we switch to a simulated annealing algorithm to define the optimum sensors for recovering skylight spectra. The annealing algorithm requires us to minimize a single cost function, and so we develop one that calculates both the spectral and colorimetric similarity of any pair of skylight spectra. We show that the simulated annealing algorithm yields results similar to the exhaustive search but with much less computational effort. Our technique lets us study the properties of optimum sensors in the presence of noise, one side effect of which is that adding more sensors may not improve the spectral recovery.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription