Abstract

Light scattering from small particles changes if the particles are absorbing. Whereas the effect is small for coronas and Bishop’s ring, glories show pronounced attenuation with increasing absorption. Results indicate suitable wavelength regions for studies of glory scattering from cloud tops. The behavior of core–shell particles could have applications for studying the atmosphere of Venus; in addition it provides more insight into the simple ray-path model of the glory.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Khare, H. M. Nussenzveig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
    [CrossRef]
  2. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979).
    [CrossRef]
  3. J. A. Lock, L. Yang, “Mie theory model of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [CrossRef] [PubMed]
  4. K. Sassen, “Corona producing cirrus cloud properties derived from polarization Lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
    [CrossRef] [PubMed]
  5. K. Sassen, G. G. Mace, J. Hallett, M. R. Poellot, “Corona producing cirrus clouds,” Appl. Opt. 37, 1477–1485 (1998).
    [CrossRef]
  6. J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
    [CrossRef]
  7. S. Gedzelman, “Simulating glories and cloudbows in color,” Appl. Opt. 42, 429–435 (2003).
    [CrossRef] [PubMed]
  8. S. Gedzelman, J. Lock, “Simulating coronas in color,” Appl. Opt. 42, 497–504 (2003).
    [CrossRef] [PubMed]
  9. Ph. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003).
    [CrossRef] [PubMed]
  10. B. Mayer, M. Schröder, R. Preusker, L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. Discuss.4, 2239–2262 (2004); see www.atmos-chem-phys.org/acpd/2004-4-2239 .
    [CrossRef]
  11. L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005).
    [CrossRef]
  12. P. Parviainen, C. F. Bohren, V. Mäkelä, “Vertical elliptical coronas caused by pollen,” Appl. Opt. 33, 4548–4551 (1994).
    [CrossRef] [PubMed]
  13. E. Tränkle, B. Mielke, “Simulation and analysis of pollen coronas,” Appl. Opt. 33, 4552–4562 (1994).
    [CrossRef] [PubMed]
  14. F. M. Mims, “Solar corona caused by juniper pollen in Texas,” Appl. Opt. 37, 1486 (1998).
    [CrossRef]
  15. J. D. Spinhirne, T. Nakajima, “Glory of clouds in the near infrared,” Appl. Opt. 33, 4652–4662 (1994).
    [CrossRef] [PubMed]
  16. Ph. Laven, http://www.philiplaven.com .
  17. A. T. Young, “Venus cloud microphysics,” Icarus 56, 568–577 (1983).
    [CrossRef]
  18. Program available from M. Quinten. E-mail: ulmi.quinten@t-online.de.
  19. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Sciences (Springer, 1995).
    [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985), Vol. 1.
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1991), Vol. 2.
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998), Vol. 3.
  23. E. P. Shettle, Naval Research Laboratory, data from HITRAN database, see, e.g., http://cfa-www.harvard.edu/hitran//orwww.hitran.com .
  24. H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
    [CrossRef]
  25. F. A. Fischbach, “Interpretation of small angle light scattering maxima of single oriented microparticles,” Opt. Lett. 10, 523–525 (1985).
    [CrossRef] [PubMed]
  26. S. D. Gedzelman, “Visibility of halos and rainbows,” Appl. Opt. 19, 3068–3074 (1980).
    [CrossRef] [PubMed]
  27. D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
    [CrossRef] [PubMed]
  28. Information on the Venus express mission can be found at: http://www.esa.int/sci_mediacentre/venusexpress_factsheet.html ; see also http://pfsweb.ifsi.rm.cnr.it/documenti/venere/vexpfsprop.pdf .
  29. S. Hosokawa, T. Matsuoka, K. Tamura, “Optical absorption spectra of liquid sulphur over a wide absorption range,” J. Phys. Cond. Matter 6, 5273–5282 (1994).
    [CrossRef]
  30. A. T. Young, Department of Astronomy, San Diego State University, San Diego, Calif. (private communication, 2004).
  31. D. J. Segelstein, “The complex index of refraction of water,” M.S. thesis (University of Missouri, Kansas City, 1981).

2005

L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005).
[CrossRef]

2004

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

2003

2002

J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
[CrossRef]

1998

1994

1991

1985

1983

A. T. Young, “Venus cloud microphysics,” Icarus 56, 568–577 (1983).
[CrossRef]

1980

1979

1977

V. Khare, H. M. Nussenzveig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[CrossRef]

1975

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[CrossRef]

Abbas, O.

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

Adam, J. A.

J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
[CrossRef]

Bohren, C. F.

Bullock, M. A.

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

Cowley, L.

L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005).
[CrossRef]

Downing, H. D.

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[CrossRef]

Fischbach, F. A.

Gedzelman, S.

Gedzelman, S. D.

Grinspoon, D. H.

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

Hallett, J.

Hosokawa, S.

S. Hosokawa, T. Matsuoka, K. Tamura, “Optical absorption spectra of liquid sulphur over a wide absorption range,” J. Phys. Cond. Matter 6, 5273–5282 (1994).
[CrossRef]

Irwin, L. N.

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

Khare, V.

V. Khare, H. M. Nussenzveig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[CrossRef]

Kreibig, U.

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Sciences (Springer, 1995).
[CrossRef]

Laven, Ph.

L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005).
[CrossRef]

Ph. Laven, “Simulation of rainbows, coronas, and glories by use of Mie theory,” Appl. Opt. 42, 436–444 (2003).
[CrossRef] [PubMed]

Lock, J.

Lock, J. A.

Mace, G. G.

Mäkelä, V.

Matsuoka, T.

S. Hosokawa, T. Matsuoka, K. Tamura, “Optical absorption spectra of liquid sulphur over a wide absorption range,” J. Phys. Cond. Matter 6, 5273–5282 (1994).
[CrossRef]

Mielke, B.

Mims, F. M.

Nakajima, T.

Nussenzveig, H. M.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998), Vol. 3.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985), Vol. 1.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1991), Vol. 2.

Parviainen, P.

Poellot, M. R.

Sassen, K.

Schulze-Makuch, D.

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

Segelstein, D. J.

D. J. Segelstein, “The complex index of refraction of water,” M.S. thesis (University of Missouri, Kansas City, 1981).

Spinhirne, J. D.

Tamura, K.

S. Hosokawa, T. Matsuoka, K. Tamura, “Optical absorption spectra of liquid sulphur over a wide absorption range,” J. Phys. Cond. Matter 6, 5273–5282 (1994).
[CrossRef]

Tränkle, E.

Vollmer, M.

L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005).
[CrossRef]

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Sciences (Springer, 1995).
[CrossRef]

Williams, D.

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[CrossRef]

Yang, L.

Young, A. T.

A. T. Young, “Venus cloud microphysics,” Icarus 56, 568–577 (1983).
[CrossRef]

A. T. Young, Department of Astronomy, San Diego State University, San Diego, Calif. (private communication, 2004).

Appl. Opt.

Astrobiology

D. Schulze-Makuch, D. H. Grinspoon, O. Abbas, L. N. Irwin, M. A. Bullock, “A sulfur-based survival strategy for putative phototrophic life in the venusian atmosphere,” Astrobiology 4, 11–18 (2004).
[CrossRef] [PubMed]

Icarus

A. T. Young, “Venus cloud microphysics,” Icarus 56, 568–577 (1983).
[CrossRef]

J. Geophys. Res.

H. D. Downing, D. Williams, “Optical constants of water in the infrared,” J. Geophys. Res. 80, 1656–1661 (1975).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Cond. Matter

S. Hosokawa, T. Matsuoka, K. Tamura, “Optical absorption spectra of liquid sulphur over a wide absorption range,” J. Phys. Cond. Matter 6, 5273–5282 (1994).
[CrossRef]

Opt. Lett.

Phys. Educ.

L. Cowley, Ph. Laven, M. Vollmer, “Rings around sun or moon: coronae and diffraction,” Phys. Educ. 40, 51–59 (2005).
[CrossRef]

Phys. Rep.

J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
[CrossRef]

Phys. Rev. Lett.

V. Khare, H. M. Nussenzveig, “Theory of the glory,” Phys. Rev. Lett. 38, 1279–1282 (1977).
[CrossRef]

Other

B. Mayer, M. Schröder, R. Preusker, L. Schüller, “Remote sensing of water cloud droplet size distributions using the backscatter glory: a case study,” Atmos. Chem. Phys. Discuss.4, 2239–2262 (2004); see www.atmos-chem-phys.org/acpd/2004-4-2239 .
[CrossRef]

Ph. Laven, http://www.philiplaven.com .

Program available from M. Quinten. E-mail: ulmi.quinten@t-online.de.

U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Material Sciences (Springer, 1995).
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1985), Vol. 1.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1991), Vol. 2.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998), Vol. 3.

E. P. Shettle, Naval Research Laboratory, data from HITRAN database, see, e.g., http://cfa-www.harvard.edu/hitran//orwww.hitran.com .

Information on the Venus express mission can be found at: http://www.esa.int/sci_mediacentre/venusexpress_factsheet.html ; see also http://pfsweb.ifsi.rm.cnr.it/documenti/venere/vexpfsprop.pdf .

A. T. Young, Department of Astronomy, San Diego State University, San Diego, Calif. (private communication, 2004).

D. J. Segelstein, “The complex index of refraction of water,” M.S. thesis (University of Missouri, Kansas City, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

(a) Mie-theory forward scattering for spheres with a normal size distribution (R = 10 μm, σ = 0.5 μm) at λ = 650 nm as a function of the index of refraction. The captions (top to bottom) belong to the curves at an angle of 15 (top to bottom). (b) Comparison of forward scattering of nonabsorbing and strongly absorbing spheres with R = 10 μm at λ = 650 nm.

Fig. 2
Fig. 2

Forward scattering of strongly absorbing spheres as a function of polarization of the radiation.

Fig. 3
Fig. 3

(a) Forward scattering for spheres with a normal size distribution (R = 1 μm, σ = 0.1 μm) at λ = 650 nm as a function of the index of refraction. The legends (top to bottom) belong to the curves at an angle of 0° (top to bottom). (b) Normalized forward scattering of the particles: the width of the aureole is more or less independent of the optical properties of the particle. The legends (top to bottom) belong to the curves at an angle of 10° (top to bottom).

Fig. 4
Fig. 4

Simple visualization of ray path for glories.

Fig. 5
Fig. 5

(a) Glory scattering for droplets of given optical constants on a log scale. (b) Glory scattering for droplets of given optical constants on a linear scale. The legends (top to bottom) belong to the curves at an angle of 165° (top to bottom).

Fig. 6
Fig. 6

Glory scattering for droplets of fixed refractive index and varying absorption.

Fig. 7
Fig. 7

Attenuation of glory fringes as a function of absorption.

Fig. 8
Fig. 8

(a) Cross section of spherical shell particle with absorbing shell. (b) For thin shells, a light ray may pass through shell plus core.

Fig. 9
Fig. 9

(a) Glory scattering for particles of given core/shell dimensions as a function of shell thickness. The legends (top to bottom) belong to the curves at an angle of 180° (top to bottom). (b) Enlarged section of glory scattering for core–shell particles droplets of given dimensions core/shell as a function of shell thickness. The legends (top to bottom) belong to the curves at an angle of 165° (top to bottom).

Fig. 10
Fig. 10

Glory scattering for shell particles with an absorbing sulfur shell for wavelengths of (a) 354 nm and (b) 394 nm.

Fig. 11
Fig. 11

Single-particle albedo and related imaginary part of refraction index for shell particles with sulfur shell.

Fig. 12
Fig. 12

Cross section of spherical shell particle with absorbing core.

Fig. 13
Fig. 13

Glory scattering for core–shell particles droplets of given dimensions core/shell as a function of shell thickness. The captions (top to bottom) belong to the curves at an angle of 165° (top to bottom).

Fig. 14
Fig. 14

Ray-path model of the glory (after Ref. 2): tangentially incident rays are refracted into the droplet and are then multiply internally reflected. Thereby, the light of the glory rays is in a shell of finite thickness.

Fig. 15
Fig. 15

Geometry for estimating the shell thickness in Fig. 14. The angle of 41.4° corresponds to n = 1.33.

Fig. 16
Fig. 16

Imaginary part of index of refraction of pure water: a k value of about 10−2 defines the wavelength regions, where glories could be visible.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 e - 4 π k x λ ,

Metrics