Abstract

Special variants of the Novaya Zemlya effect may arise from localized temperature inversions that follow the height profile of hills or mountains. Rather than following its natural path, the rising or setting Sun may, under such circumstances, appear to slide along a distant mountain slope. We found early observations of this effect in the literature by Willem Barents (1597) and by Captain Scott and H. G. Ponting (1911). We show recent photographic material of the effect and present ray-tracing calculations to explain its essentials.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. van der Werf, G. P. Können, W. H. Lehn, “Novaya Zemlya effect and sunsets,” Appl. Opt. 42, 367–378 (2003).
    [CrossRef] [PubMed]
  2. S. Y. van der Werf, G. P. Können, W. H. Lehn, F. Steenhuisen, W. P. S. Davidson, “Gerrit de Veer’s true and perfect description of the Novaya Zemlya effect, 24–27 January 1597,” Appl. Opt. 42, 379–389 (2003).
    [CrossRef] [PubMed]
  3. G. De Veer, Waerachtige Beschryvinge van drie seylagiën ter werelt noyt soo vreemdt ghehoort, C. Claesz, ed. (Amsterdam, The Netherlands, 1598).
  4. G. De Veer, The True and Perfect Description of Three Voyages, so Strange and Woonderfull That the Like Hath Never Been Heard of Before; translation of Ref. 1 by W. Philip, ed. (Pauier, London, 1609).
  5. M. Baills, “Sur les phénomènes astronomiques observés en 1597 par les Hollandais à la Nouvelle-Zemble,” presented by M. Jurien de la Gravière, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Vol. LXXX48I, No. 23 (6December1875) (submitted for the sections of Astronomy, Geography and Navigation).
  6. H. G. Ponting, The Great White South (Duckworth, London, 1921).
  7. S. Y. van der Werf, “Ray tracing and refraction in the modified US1976 atmosphere,” Appl. Opt. 42, 354–366 (2003).
    [CrossRef] [PubMed]
  8. The Nautical Almanac (Her Majesty’s Nautical Almanac Office, London, and the Nautical Almanac Office United States, Washington, D.C., 2003 and 2004).

2003 (3)

Baills, M.

M. Baills, “Sur les phénomènes astronomiques observés en 1597 par les Hollandais à la Nouvelle-Zemble,” presented by M. Jurien de la Gravière, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Vol. LXXX48I, No. 23 (6December1875) (submitted for the sections of Astronomy, Geography and Navigation).

Davidson, W. P. S.

De Veer, G.

G. De Veer, Waerachtige Beschryvinge van drie seylagiën ter werelt noyt soo vreemdt ghehoort, C. Claesz, ed. (Amsterdam, The Netherlands, 1598).

G. De Veer, The True and Perfect Description of Three Voyages, so Strange and Woonderfull That the Like Hath Never Been Heard of Before; translation of Ref. 1 by W. Philip, ed. (Pauier, London, 1609).

Jurien de la Gravière, M.

M. Baills, “Sur les phénomènes astronomiques observés en 1597 par les Hollandais à la Nouvelle-Zemble,” presented by M. Jurien de la Gravière, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Vol. LXXX48I, No. 23 (6December1875) (submitted for the sections of Astronomy, Geography and Navigation).

Können, G. P.

Lehn, W. H.

Ponting, H. G.

H. G. Ponting, The Great White South (Duckworth, London, 1921).

Steenhuisen, F.

van der Werf, S. Y.

Appl. Opt. (3)

Other (5)

G. De Veer, Waerachtige Beschryvinge van drie seylagiën ter werelt noyt soo vreemdt ghehoort, C. Claesz, ed. (Amsterdam, The Netherlands, 1598).

G. De Veer, The True and Perfect Description of Three Voyages, so Strange and Woonderfull That the Like Hath Never Been Heard of Before; translation of Ref. 1 by W. Philip, ed. (Pauier, London, 1609).

M. Baills, “Sur les phénomènes astronomiques observés en 1597 par les Hollandais à la Nouvelle-Zemble,” presented by M. Jurien de la Gravière, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, Vol. LXXX48I, No. 23 (6December1875) (submitted for the sections of Astronomy, Geography and Navigation).

H. G. Ponting, The Great White South (Duckworth, London, 1921).

The Nautical Almanac (Her Majesty’s Nautical Almanac Office, London, and the Nautical Almanac Office United States, Washington, D.C., 2003 and 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Conjunction of Jupiter and the Moon, 25 January 1597, as seen from Het Behouden Huijs in the northern direction. The calculated images are shown above the mountain ridge. Below the horizon, Jupiter’s true altitudes are given. The Moon, being higher, is little affected by refraction.

Fig. 2
Fig. 2

Schematic impression of isotherms over a mountain or hill, showing their compression over the top.

Fig. 3
Fig. 3

Part of a topographic map, showing the place of the observer at the local weather station, just south of the airport, and Sheringham Point to the WNW.

Fig. 4
Fig. 4

Picture of Sheringham Point, taken on 8 October 2004 (photograph by Wayne Davidson).

Fig. 5
Fig. 5

Sunsets over Sheringham Point on 28–30 March 2004 and 30 March 2003 (photographs by Wayne Davidson). The exact shooting times are as follow (in UT): (28 March 2004) 01:26:32/01:29:27/01:29:52/01:30:47/01:31:24/01:31:32. (29 March 2004) 01:23:14/01:32:13/01:32:52. (30 March 2003) 01:31:40/01:33:38. (30 March 2004) 01:31:40/01:34:36/01:34:45/01:34:55/01:35:52. For each picture, the true (geometrical) altitude of the Sun is indicated.

Fig. 6
Fig. 6

Temperature profiles at Resolute Bay, for the period 27–30 March 2004, measured by Environment Canada, Nunavut. Balloons are launched daily ~23:20 UT from the weather station (46 m above sea level). Data are transmitted every 10 s, corresponding to increments in height of ~50 m.

Fig. 7
Fig. 7

Ray-tracing example. The observer’s eye is at 48 m above sea level. Rays are followed over a hill with the approximate shape and height as corresponding to the top of Sheringham Point. Isotherms at the half- and quarter points of an assumed 5 °C temperature jump across the inversion are indicated as gray lines. The central isotherm is taken at 10 m above the top.

Fig. 8
Fig. 8

Transformation curves for the cases: no additional inversion (dashed line): inversion centered at (a) ~140 m, (b) ~100 m, (c) ~60 m. In all cases the transformation curve is limited to the lower side by the hill side, which is taken 10 m below the central isotherm, hiso. This is the isotherm that marks the height of the maximal temperature gradient. See also Refs. 1 and 2.

Fig. 9
Fig. 9

Three-dimensional impression of the transformation curves and their dependence on the lateral (azimuthal) viewing angle. The zero point of the azimuthal angle is chosen halfway up the slope of the hill, whose silhouette rises linearly from −12′ to +18′ apparent altitude over the azimuthal range [−1°, +1°]. This silhouette is shown in the bottom plane. (top) The resonance dip is independent of the azimuthal angle, as on 28 and 29 March 2004. (bottom) The dip follows the hill slope and lies above it at all azimuthal angles.

Fig. 10
Fig. 10

Simulations of the sunsets and twilights on 28 and 30 March 2004. All boxes are 64 × 64′ in horizontal and vertical width, and the Sun’s position is centered at the middle of the horizontal scale. The hill is drawn as semitransparent to give an impression of the total image of Sun and twilight.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

resonance ( h ) = D [ 1 + ( h - h 0 ) 2 / σ 2 ] ,

Metrics