Abstract

Pure rotational coherent anti-Stokes Raman-scattering (CARS) measurements have been performed in binary CO2–N2 and ternary CO2–O2–N2 mixtures in a temperature range between 300 and 773 K and pressures from 0.1 to 5 MPa to prove its potential for simultaneous single-shot thermometry and multispecies concentration measurements. In pressurized systems the CO2 component has a strong spectral influence on the pure rotational CARS spectra. Because of this dominance, pure rotational CARS proves to be a sensitive tool to measure in high-pressure combustion systems and the relative CO2–N2 concentration in the lower temperature range simultaneously with the temperature and the relative O2–N2 concentration. The evaluation of the spectra utilized a least-sum-squared differences fit of the spectral shape, weighted either constantly or inversely with respect to the normalized signal intensity. The results of the simultaneous temperature and relative CO2–N2 and O2–CO2–N2 concentration measurements provided a good accuracy and precision both in temperature and in concentrations. Because of the strong increase in the relative spectral contribution of CO2 with rising pressure, the precision of the CO2 concentration determination is in general significantly improved toward higher pressures, thus also clearly enhancing the CO2 detectability. The influence of temperature, O2 and CO2 concentration, pressure, and the evaluation techniques employed on both the accuracy and the precision is explained as well as their cross dependencies. The influence and limitations of the approximations used to model the CO2 molecule are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Zheng, R. K. Chang, R. L. Farrow, A. Leipertz, D. V. Murphy, J. B. Snow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman-scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
    [CrossRef] [PubMed]
  2. A. Leipertz, T. Seeger, H. Spieger, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Seventh International Symposium on Temperature: Its Measurement and Control in Science and Industry (American Institute of Physics, 1992), pp. 661–666.
  3. C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
    [CrossRef]
  4. T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
    [CrossRef] [PubMed]
  5. A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
    [CrossRef] [PubMed]
  6. L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
    [CrossRef]
  7. M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot temperature and relative N2–O2 concentration,” Appl. Opt. 37, 5659–5671 (1998).
    [CrossRef]
  8. M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2–N2 concentration measurements by pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
    [CrossRef]
  9. J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
    [CrossRef]
  10. M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004).
    [CrossRef]
  11. M. Schenk, T. Seeger, A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa using pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. (to be published).
  12. M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
    [CrossRef] [PubMed]
  13. S. Roy, G. Ray, R. Lucht, “Interline transfer CCD camera for gated broadband coherent anti-Stokes Raman-scattering measurements,” Appl. Opt. 40, 6005–6011 (2001).
    [CrossRef]
  14. M. Schenk, Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie, Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie- und Systemtechnik GmbH, Erlangen, Germany, 2000), Vol. 2000.2.
  15. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
    [CrossRef] [PubMed]
  16. J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
    [CrossRef]
  17. G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
    [CrossRef]
  18. E. Magens, Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen, Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2.
  19. L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
    [CrossRef]
  20. L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
    [CrossRef]
  21. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute rotational Raman cross sections for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  22. M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
    [CrossRef]
  23. J. D. Drake, “Rotational Raman intensity-correction factors due to vibrational anharmonicity: their effect on temperature measurements,” Opt. Lett. 7, 440–441 (1982).
    [CrossRef] [PubMed]
  24. L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
    [CrossRef]
  25. J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, 1979), Vol. 11, pp. 253–299.
    [CrossRef]
  26. R. C. H. Tam, A. D. May, “Motional narrowing of the rotational Raman band of compressed CO, N2, and CO2,” Can. J. Phys. 61, 1558–1566 (1983).
    [CrossRef]
  27. L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
    [CrossRef]
  28. K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverteilung im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch. Teil A 31, 1311–1317 (1976).
  29. F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

2004

C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
[CrossRef]

M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004).
[CrossRef]

2001

2000

M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2–N2 concentration measurements by pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
[CrossRef]

J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[CrossRef]

1998

1997

1996

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

1993

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

1992

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

1991

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
[CrossRef]

1988

1986

1984

1983

R. C. H. Tam, A. D. May, “Motional narrowing of the rotational Raman band of compressed CO, N2, and CO2,” Can. J. Phys. 61, 1558–1566 (1983).
[CrossRef]

1982

1981

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

1978

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

1976

K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverteilung im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch. Teil A 31, 1311–1317 (1976).

1974

Afzelius, M.

C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
[CrossRef]

M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004).
[CrossRef]

Alden, M.

J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

Altmann, K.

K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverteilung im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch. Teil A 31, 1311–1317 (1976).

Bengtsson, P. E.

J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[CrossRef]

Bengtsson, P.-E.

M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004).
[CrossRef]

C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

Berger, H.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Boissoles, J.

L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
[CrossRef]

Bonamy, J.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Bonamy, L.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
[CrossRef]

Bood, J.

C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
[CrossRef]

J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[CrossRef]

Boulet, C.

L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
[CrossRef]

Brackmann, C.

M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004).
[CrossRef]

C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
[CrossRef]

Chang, R. K.

Chaux, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Dinkelacker, F.

F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

Drake, J. D.

Drake, M. C.

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

Edner, H.

Farrow, R. L.

Gamache, R. R.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Gonze, M. L.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Hartmann, J. M.

Hawkins, R. L.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Höller, V.

F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

Jonuscheit, J.

Klöckner, W.

K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverteilung im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch. Teil A 31, 1311–1317 (1976).

Knighten, G. V.

J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, 1979), Vol. 11, pp. 253–299.
[CrossRef]

Kröll, S.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

Lapp, M.

Lavorel, B.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Leipertz, A.

M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2–N2 concentration measurements by pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
[CrossRef]

M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot temperature and relative N2–O2 concentration,” Appl. Opt. 37, 5659–5671 (1998).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

J. B. Zheng, R. K. Chang, R. L. Farrow, A. Leipertz, D. V. Murphy, J. B. Snow, “Experimental comparison of broadband rotational coherent anti-Stokes Raman-scattering (CARS) and broadband vibrational CARS in a flame,” Opt. Lett. 9, 341–343 (1984).
[CrossRef] [PubMed]

A. Leipertz, T. Seeger, H. Spieger, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Seventh International Symposium on Temperature: Its Measurement and Control in Science and Industry (American Institute of Physics, 1992), pp. 661–666.

M. Schenk, T. Seeger, A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa using pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. (to be published).

F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

Lucht, R.

Magens, E.

E. Magens, Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen, Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2.

A. Leipertz, T. Seeger, H. Spieger, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Seventh International Symposium on Temperature: Its Measurement and Control in Science and Industry (American Institute of Physics, 1992), pp. 661–666.

Martinsson, L.

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

May, A. D.

R. C. H. Tam, A. D. May, “Motional narrowing of the rotational Raman band of compressed CO, N2, and CO2,” Can. J. Phys. 61, 1558–1566 (1983).
[CrossRef]

Millot, G.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

Most, D.

F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

Murphy, D. V.

Nibler, J. W.

J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, 1979), Vol. 11, pp. 253–299.
[CrossRef]

Penney, C. M.

Perrin, M. Y.

Ray, G.

Robert, D.

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
[CrossRef]

Rosenblatt, G. M.

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

Rosenmann, L.

Rothman, L. S.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Roy, S.

Saint-Loup, R.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Santos, J.

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

Schenk, M.

Seeger, T.

M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2–N2 concentration measurements by pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
[CrossRef]

M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot temperature and relative N2–O2 concentration,” Appl. Opt. 37, 5659–5671 (1998).
[CrossRef]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

A. Leipertz, T. Seeger, H. Spieger, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Seventh International Symposium on Temperature: Its Measurement and Control in Science and Industry (American Institute of Physics, 1992), pp. 661–666.

M. Schenk, T. Seeger, A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa using pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. (to be published).

Snow, J. B.

Soika, A.

F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

Spieger, H.

A. Leipertz, T. Seeger, H. Spieger, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Seventh International Symposium on Temperature: Its Measurement and Control in Science and Industry (American Institute of Physics, 1992), pp. 661–666.

St. Peters, R. L.

Strey, G.

K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverteilung im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch. Teil A 31, 1311–1317 (1976).

Taine, J.

Tam, R. C. H.

R. C. H. Tam, A. D. May, “Motional narrowing of the rotational Raman band of compressed CO, N2, and CO2,” Can. J. Phys. 61, 1558–1566 (1983).
[CrossRef]

Thumann, A.

Vestin, F.

Wattson, R. B.

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

Young, L. D. G.

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Zheng, J. B.

Appl. Opt.

T. Seeger, A. Leipertz, “Experimental comparison of single-shot broadband vibrational and dual-broadband pure rotational coherent anti-Stokes Raman scattering in hot air,” Appl. Opt. 35, 2665–2671 (1996).
[CrossRef] [PubMed]

A. Thumann, M. Schenk, J. Jonuscheit, T. Seeger, A. Leipertz, “Simultaneous temperature and relative nitrogen oxygen concentration measurements in air with pure rotational coherent anti-Stokes Raman scattering for temperatures to as high as 2050 K,” Appl. Opt. 36, 3500–3505 (1997).
[CrossRef] [PubMed]

M. Schenk, A. Thumann, T. Seeger, A. Leipertz, “Pure rotational coherent anti-Stokes Raman scattering: comparison of evaluation techniques for determining single-shot temperature and relative N2–O2 concentration,” Appl. Opt. 37, 5659–5671 (1998).
[CrossRef]

M. Schenk, T. Seeger, A. Leipertz, “Simultaneous temperature and relative O2–N2 concentration measurements by pure rotational coherent anti-Stokes Raman scattering for pressures as great as 5 MPa,” Appl. Opt. 39, 6918–6925 (2000).
[CrossRef]

M. Afzelius, C. Brackmann, F. Vestin, P.-E. Bengtsson, “Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2,” Appl. Opt. 43, 6664–6665 (2004).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, O2 in the 300–2400-K temperature range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

M. Alden, P.-E. Bengtsson, H. Edner, “Rotational CARS generation through a multiple four-color interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

S. Roy, G. Ray, R. Lucht, “Interline transfer CCD camera for gated broadband coherent anti-Stokes Raman-scattering measurements,” Appl. Opt. 40, 6005–6011 (2001).
[CrossRef]

Appl. Phys. B

J. Bood, P. E. Bengtsson, M. Alden, “Temperature and concentration measurements in acetylene-nitrogen mixtures in the range 300–600 K using dual-broadband rotational CARS,” Appl. Phys. B 70, 607–620 (2000).
[CrossRef]

L. Martinsson, P.-E. Bengtsson, M. Alden, “Oxygen concentration and temperature measurements in N2–O2 mixtures using rotational coherent anti-Stokes Raman spectroscopy,” Appl. Phys. B 62, 29–37 (1996).
[CrossRef]

Can. J. Phys.

R. C. H. Tam, A. D. May, “Motional narrowing of the rotational Raman band of compressed CO, N2, and CO2,” Can. J. Phys. 61, 1558–1566 (1983).
[CrossRef]

Combust. Flame

M. C. Drake, G. M. Rosenblatt, “Rotational Raman scattering from premixed and diffusion flames,” Combust. Flame 33, 179–196 (1978).
[CrossRef]

J. Chem. Phys.

L. Martinsson, P.-E. Bengtsson, M. Alden, S. Kröll, J. Bonamy, “A test of different rotational Raman linewidth models—accuracy of rotational coherent anti-Stokes-Raman scattering thermometry in nitrogen from 295 K to 1850 K,” J. Chem. Phys. 99, 2466–2477 (1993).
[CrossRef]

J. Bonamy, L. Bonamy, D. Robert, M. L. Gonze, G. Millot, B. Lavorel, H. Berger, “Rotational relaxation of nitrogen in ternary mixtures N2–CO2–H2O: consequences in coherent anti-Stokes spectroscopy thermometry,” J. Chem. Phys. 94, 6584–6589 (1991).
[CrossRef]

G. Millot, R. Saint-Loup, J. Santos, R. Chaux, H. Berger, J. Bonamy, “Collisional effects in the stimulated Raman Q branch of O2and O2–N2,” J. Chem. Phys. 96, 961–971 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Quant. Spectrosc. Radiat. Transfer

L. Bonamy, D. Robert, J. Boissoles, C. Boulet, “Determination of ECS scaling parameters for CO2–CO2and CO2–N2,” J. Quant. Spectrosc. Radiat. Transfer 45, 305–308 (1991).
[CrossRef]

L. S. Rothman, R. L. Hawkins, R. B. Wattson, R. R. Gamache, “Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands,” J. Quant. Spectrosc. Radiat. Transfer 48, 537–566 (1992).
[CrossRef]

L. S. Rothman, L. D. G. Young, “Infrared energy levels and intensities of carbon dioxide-II,” J. Quant. Spectrosc. Radiat. Transfer 25, 505–524 (1981).
[CrossRef]

Meas. Sci. Technol.

C. Brackmann, J. Bood, M. Afzelius, P.-E. Bengtsson, “Thermometry in internal combustion engines via dual-broadband rotational coherent anti-Stokes Raman spectroscopy,” Meas. Sci. Technol. 15, R13–R25 (2004).
[CrossRef]

Opt. Lett.

Z. Naturforsch. Teil A

K. Altmann, W. Klöckner, G. Strey, “Der Intensitätsverteilung im reinen Rotations-Raman-Spektrum von CO2 und N2O unter Berücksichtigung des 0110-Niveaus,” Z. Naturforsch. Teil A 31, 1311–1317 (1976).

Other

F. Dinkelacker, A. Soika, D. Most, V. Höller, A. Leipertz, “Measurement of local temperature gradients in turbulent combustion systems using two-dimensional laser diagnostics,” in 11th International Heat Transfer Conference (Taylor & Francis, 1998), pp. 373–378.

J. W. Nibler, G. V. Knighten, “Coherent anti-Stokes Raman spectroscopy,” in Raman Spectroscopy of Gases and Liquids, A. Weber, ed. (Springer-Verlag, 1979), Vol. 11, pp. 253–299.
[CrossRef]

A. Leipertz, T. Seeger, H. Spieger, E. Magens, “Gas temperature measurements by pure rotational CARS,” in Seventh International Symposium on Temperature: Its Measurement and Control in Science and Industry (American Institute of Physics, 1992), pp. 661–666.

M. Schenk, T. Seeger, A. Leipertz, “Time-resolved CO2 thermometry for pressures as great as 5 MPa using pure rotational coherent anti-Stokes Raman scattering,” Appl. Opt. (to be published).

M. Schenk, Simultane Temperatur- und Konzentrationsmessung in binären und ternären Gemischen mittels Rotations-CARS-Spektroskopie, Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie- und Systemtechnik GmbH, Erlangen, Germany, 2000), Vol. 2000.2.

E. Magens, Nutzung von Rotations-CARS zur Temperaturund Konzentrationsmessung in Flammen, Berichte zur Energie- und Verfahrenstechnik (ESYTEC Energie und Systemtechnik GmbH, Erlangen, Germany, 1993), Vol. 93.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1
Fig. 1

Half-width at half-maximum (HWHM) linewidth data for the (a) CO2–N2 and (b) CO2–O2 collisional broadening, according to Ref. 15 in comparison with the values modeled by a polynomial approximation of fourth order.

Fig. 2
Fig. 2

Accumulated experimental spectrum (200 single shots) of a 15% CO2–N2 mixture (0.1 MPa; 300 K) compared with the best-fitting theoretical spectrum. The difference of both spectra is depicted as well.

Fig. 3
Fig. 3

Increasing spectral influence of CO2 relative to N2 toward higher pressures. The figure displays the accumulated experimental spectra (3.8% CO2; 573 K at 0.1 and 5 MPa, top and bottom, respectively) compared with the best-fitting theoretical spectra of a 3.8% CO2 mixture with N2 as well as with the best-fitting theoretical spectra of pure N2. The corresponding difference spectra are depicted in the lower parts of both graphs.

Fig. 4
Fig. 4

Visualization of the decreasing spectral influence of CO2 relative to N2 for rising temperatures. Depicted are accumulated experimental spectra of a 15% CO2 mixture at 773, 573, and 300 K (top to bottom; solid curves) and a pressure of 1.0 MPa. For comparison the particular best-fitting theoretical spectra (dashed–dotted curves) and the evaluated CARS temperatures and concentrations are depicted as well.

Fig. 5
Fig. 5

Comparison of the probability density functions of the simultaneous temperature (top) and CO2 concentration determination (bottom; 500 single shots; inversely weighted LSF) at reference temperatures of 300, 573, and 773 K, a CO2 concentration of 15%, and a pressure of 1.0 MPa.

Fig. 6
Fig. 6

Exemplary comparison of the pressure dependence of the temperature mean values for a CO2 concentration of 15%. Each point represents the mean value of 500 single shots. The particular single-shot standard deviations are stated as error bars with ±σ.

Fig. 7
Fig. 7

Comparison of the pressure dependencies of the single-shot temperature standard deviation for various reference temperatures and various CO2 concentrations. The plots on the left represent the results obtained by a constantly weighted LSF; the plots on the right depict the results of the inversely weighted LSF. Please note that the Y scales change from the top to the bottom.

Fig. 8
Fig. 8

Exemplary comparison of the pressure dependencies of the CO2 concentration mean values at the reference temperatures of 773 and 300 K for binary mixtures of CO2 and N2. The results were obtained by an inversely weighted LSF. The particular single-shot standard deviations are depicted as ±σ error bars.

Fig. 9
Fig. 9

Comparison of the pressure dependencies of the single-shot CO2 concentration standard deviation for various reference temperatures and various CO2 concentrations. The plots on the left represent the results obtained by a constantly weighted LSF; the plots on the right depict the results of the inversely weighted LSF. Note that the Y scales on the left and right sides are different.

Fig. 10
Fig. 10

Comparison of the pressure dependency of the spectral shape of a 15% CO2–N2 (left) and 15% O2–N2 mixture (right) at a temperature of 573 K. The increasing spectral influence of CO2 relative to N2 for rising pressures is eye-catching, whereas the N2 and O2 contributions seem to behave rather similarly with rising pressures, with a slight increase of the relative spectral dominance of nitrogen for rising pressures (left), as already stated in our previous publication.8

Fig. 11
Fig. 11

Comparison of the temperature mean values obtained for a 15% CO2–N2 mixture by calculating the spectra in the isolated line approximation and by employing the Gordon matrix model for the CO2 contribution. The results were obtained by an inversely weighted LSF.

Fig. 12
Fig. 12

Exemplary comparison of the single-shot standard deviation of the temperature (left) and the CO2 concentration (right), obtained for a 15% CO2–N2 mixture at 773 and 300 K by calculating the spectra in the isolated line approximation and by employing the Gordon matrix model for the CO2 contribution. The results were obtained by an inversely weighted LSF.

Fig. 13
Fig. 13

Deviation of the CO2 concentration mean values relative to each other obtained for a 15% CO2–N2 mixture when using the Gordon matrix model instead of the isolated line model. It should be emphasized that these are relative deviations of the mean value results (with respect to the Gordon approach). The results were obtained by an inversely weighted LSF.

Fig. 14
Fig. 14

Accumulated experimental spectrum (200 single shots) of gas mixture IV at 1.11 MPa and 300 K compared with the best-fitting theoretical spectrum. The difference of both spectra is depicted as well.

Fig. 15
Fig. 15

Comparison of the pressure dependencies of the temperature mean values for gas mixture IV. Each point represents the mean value of 500 single-shot results obtained by an inversely weighted LSF. The particular single-shot standard deviations are stated as error bars with ±σ.

Fig. 16
Fig. 16

Comparison of the pressure dependencies of the single-shot temperature standard deviation for various reference temperatures and gas mixture IV. (a) Results obtained by a constantly weighted LSF, (b) results from an inversely weighted LSF.

Fig. 17
Fig. 17

Comparison of the pressure dependencies of the O2 and CO2 concentration mean values at the reference temperatures 773, 623, and 300 K for gas mixture IV. The results were obtained by an inversely weighted LSF. The particular single-shot standard deviations are depicted as ±σ error bars.

Fig. 18
Fig. 18

Comparison of the pressure dependencies of the single-shot standard deviation regarding the O2 (left) and CO2 concentration determination (right) for gas mixture IV at various reference temperatures. (a) Results obtained by a constantly weighted LSF, (b) results from an inversely weighted LSF.

Fig. 19
Fig. 19

Sketch of the turbulent burner cross section.

Fig. 20
Fig. 20

Results of the mean concentration and the corresponding single-shot standard deviation of the model gas CO2 as a function of the radial distance from the burner center (upper graph). The measurements took place 10 mm above the burner surface. The lower graph displays the corresponding temperature mean values of the simultaneous temperature evaluation, together with the standard deviation. The results prove the high reliability of pure rotational CARS for CO2 concentration determination and for temperature measurements, even in areas of extremely varying gas compositions. The results were gained by means of an inversely weighted LSF.

Tables (1)

Tables Icon

Table 1 Volumetric Compositions of the Measured Gas Mixtures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χ CARS = χ n r + a , b 8 π 2 n ( ω 1 ) ɛ 0 c 4 n ( ω 2 ) ω 2 4 N [ ρ a a ( 0 ) - ρ b b ( 0 ) ] [ ω b a - ( ω 1 - ω 2 ) - i Γ b a ] × ( d σ b a CARS d Ω ) .

Metrics