Abstract

We have theoretically demonstrated type II broadband second-harmonic generation (SHG) based on a quasi-phase-matching (QPM) configuration in periodically poled KTP (PPKTP). The wavelength dependence of QPM grating periods at different temperatures of 5 °C, 25 °C, and 45 °C is calculated with the crystal length of 1 cm. We find a very wide bandwidth, as large as 42.6 nm, of fundamental wavelength of 1.58 μm at the telecommunication band with the QPM period of 48.9 μm at 25 °C. The corresponding bandwidths of incident angle and temperature are found to be 4.24° and 14.8 °C, respectively. The comparison among PPKTP, periodically poled lithium niobate (PPLN), and MgO:PPLN reveals the unique performance of PPKTP in the broadband SHG.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
    [CrossRef]
  2. N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
    [CrossRef]
  3. S. Wang, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
    [CrossRef]
  4. V. Pasiskevicius, S. J. Holmgren, S. Wang, F. Laurell, “Simultaneous second-harmonic generation with two orthogonal polarization states in periodically poled KTP,” Opt. Lett. 27, 1628–1630 (2002).
    [CrossRef]
  5. T. A. Driscoll, H. J. Hoffman, R. E. Stone, P. E. Perkins, “Efficient second-harmonic generation in KTP crystals,” J. Opt. Soc. Am. B 3, 683–686 (1986).
    [CrossRef]
  6. B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997).
    [CrossRef]
  7. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
    [CrossRef]
  8. K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
    [CrossRef]
  9. V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998).
    [CrossRef]
  10. CASIX, http://www.casix.com (2003).
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  12. H. Ishizuki, I. Shoji, T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals,” Appl. Phys. Lett. 82, 4062–4063 (2003).
    [CrossRef]

2003 (2)

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

H. Ishizuki, I. Shoji, T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals,” Appl. Phys. Lett. 82, 4062–4063 (2003).
[CrossRef]

2002 (2)

1999 (2)

S. Wang, V. Pasiskevicius, J. Hellstrom, F. Laurell, H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
[CrossRef]

K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

1998 (1)

1997 (2)

B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, P. Villeval, “Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere,” J. Opt. Soc. Am. B 14, 1380–1386 (1997).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1986 (1)

Arie, A.

K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Ashihara, S.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

Bonnin, C.

Boulanger, B.

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Cha, M.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
[CrossRef]

Driscoll, T. A.

Eger, D.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Fejer, M. M.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Feve, J. P.

Hellstrom, J.

Hoffman, H. J.

Holmgren, S. J.

Ishizuki, H.

H. Ishizuki, I. Shoji, T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals,” Appl. Phys. Lett. 82, 4062–4063 (2003).
[CrossRef]

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Karlsson, H.

Katz, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Kitamura, K.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

Kurimura, S.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
[CrossRef]

Kuroda, K.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

Laurell, F.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mahal, V.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Marnier, G.

Oron, M.

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Pasiskevicius, V.

Perkins, P. E.

Ro, J. H.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
[CrossRef]

Rosenman, G.

K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Shimura, T.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

Shoji, I.

H. Ishizuki, I. Shoji, T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals,” Appl. Phys. Lett. 82, 4062–4063 (2003).
[CrossRef]

Skliar, A.

K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Stone, R. E.

Taira, T.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

H. Ishizuki, I. Shoji, T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals,” Appl. Phys. Lett. 82, 4062–4063 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
[CrossRef]

Tellefsen, J. A.

Tradkin, K.

K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

Villeval, P.

Wang, S.

Yu, N. E.

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, T. Taira, “Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band,” Opt. Lett. 27, 1046–1048 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

N. E. Yu, S. Kurimura, K. Kitamura, J. H. Ro, M. Cha, S. Ashihara, T. Shimura, K. Kuroda, T. Taira, “Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate,” Appl. Phys. Lett. 82, 3388–3390 (2003).
[CrossRef]

K. Tradkin, A. Arie, A. Skliar, G. Rosenman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999).
[CrossRef]

H. Ishizuki, I. Shoji, T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals,” Appl. Phys. Lett. 82, 4062–4063 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997)
[CrossRef]

Opt. Lett. (3)

Other (1)

CASIX, http://www.casix.com (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Period of QPM gratings as a function of the fundamental wavelength at three different temperatures of 5 °C, 25 °C, and 45 °C. The maximum grating period Λ is 48.9 μm at the broadband SHG center wavelength of 1.58 μm at 25 °C. The insets are the normalized SH intensity versus the fundamental wavelength at the corresponding temperatures with the grating period of 48.9 μm, respectively.

Fig. 2
Fig. 2

Wavelength bandwidth of QPM SHG versus fundamental wavelength at 25 °C. The insets are the wavelength dependence of the normalized SH intensity at the center wavelength of 1.56 and 1.58 μm under the grating period of 48.9 μm, respectively.

Fig. 3
Fig. 3

Incident angle bandwidth versus fundamental wavelength at 25 °C. The normalized SH intensity as a function of the incident angle at 1.58 μm is shown in the inset and the angle bandwidth Δθ is 4.24°.

Fig. 4
Fig. 4

Normalized SH intensity versus temperature at 1.58 μm. The temperature bandwidth ΔT is ~14.8 °C.

Tables (1)

Tables Icon

Table 1 Comparison of Broadband QPM SHG in PPKTP (EyωEzωEy), MgO:PPLN (o + oe), and PPLN (o + oe)a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η sinc 2 ( Δ k 24 L / 2 ) ,
Δ k 24 = k 2 y - k 1 y - k 1 z - 2 π Λ 1 = 2 π ( 2 n 2 y - n 1 y - n 1 z ) λ - 2 π Λ 1 ,
Λ 1 = 2 π Δ k 24 λ / ( 2 n 2 y - n 1 y - n 1 z )
d ( Δ k 24 ) d λ = 2 π c λ 2 δ ,

Metrics