Abstract

We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Fork, “Physics of optical switching,” Phy. Rev. A 26, 2049–2064 (1982).
    [CrossRef]
  2. S. A. Podoshvedov, “Switching effects in photorefractive crystals belonging to 3m point group of symmetry,” Opt. Commun. 199, 245–255 (2001).
    [CrossRef]
  3. C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
    [CrossRef]
  4. A. Yacoubian, T. M. Aye, “Enhanced optical modulation using azo-dye polymers,” Appl. Opt. 32, 3073–3080 (1993).
    [CrossRef] [PubMed]
  5. H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
    [CrossRef]
  6. F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
    [CrossRef]
  7. C. P. Singh, S. Roy, “Dynamics of all-optical switching in C60 and its application to optical logic gates,” Opt. Eng. 43, 426–431 (2004).
    [CrossRef]
  8. P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
    [CrossRef]
  9. N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
    [CrossRef]
  10. R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
    [CrossRef]
  11. W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochem. Biophys. Acta 505, 215–278 (1979).
  12. R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
    [CrossRef]
  13. P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
    [CrossRef]
  14. Y. Huang, S.-T. Wu, Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028–2030 (2004).
    [CrossRef]
  15. Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
    [CrossRef]
  16. F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
    [CrossRef]
  17. P. Ormos, L. Fábaián, L. Oroszi, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060–4062 (2002).
    [CrossRef]
  18. Y. Huang, S. T. Wu, Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895–906 (2004).
    [CrossRef] [PubMed]
  19. S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
    [CrossRef]
  20. D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
    [CrossRef]
  21. F. T. S. Yu, S. Jutamulia, S. Yin, eds., Introduction to Information Optics (Academic, 2001), Chap. 4.

2005 (1)

R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[CrossRef]

2004 (4)

C. P. Singh, S. Roy, “Dynamics of all-optical switching in C60 and its application to optical logic gates,” Opt. Eng. 43, 426–431 (2004).
[CrossRef]

Y. Huang, S.-T. Wu, Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028–2030 (2004).
[CrossRef]

S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
[CrossRef]

Y. Huang, S. T. Wu, Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895–906 (2004).
[CrossRef] [PubMed]

2003 (3)

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
[CrossRef]

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

2002 (2)

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

P. Ormos, L. Fábaián, L. Oroszi, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060–4062 (2002).
[CrossRef]

2001 (1)

S. A. Podoshvedov, “Switching effects in photorefractive crystals belonging to 3m point group of symmetry,” Opt. Commun. 199, 245–255 (2001).
[CrossRef]

2000 (1)

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[CrossRef]

1999 (1)

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

1996 (1)

F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
[CrossRef]

1995 (1)

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

1993 (2)

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

A. Yacoubian, T. M. Aye, “Enhanced optical modulation using azo-dye polymers,” Appl. Opt. 32, 3073–3080 (1993).
[CrossRef] [PubMed]

1982 (1)

R. L. Fork, “Physics of optical switching,” Phy. Rev. A 26, 2049–2064 (1982).
[CrossRef]

1979 (1)

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochem. Biophys. Acta 505, 215–278 (1979).

Akkara, J. A.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Aranda, F. J.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Aye, T. M.

Banyal, R. K.

R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[CrossRef]

Birge, R. R.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Blau, W. J.

F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
[CrossRef]

Bogomolni, R. A.

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochem. Biophys. Acta 505, 215–278 (1979).

Cazzini, K. H.

F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
[CrossRef]

Chen, Z.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

DeCristofano, B. S.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

Dharamadhikari, A. K.

S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
[CrossRef]

Fábaián, L.

P. Ormos, L. Fábaián, L. Oroszi, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060–4062 (2002).
[CrossRef]

Fork, R. L.

R. L. Fork, “Physics of optical switching,” Phy. Rev. A 26, 2049–2064 (1982).
[CrossRef]

Garimella, R.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Gillespie, N. B.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Gu, C.

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Hampp, N.

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[CrossRef]

Haung, Y.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

He, H.

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Hegde, G. M.

R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[CrossRef]

Henari, F. Z.

F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
[CrossRef]

Huang, Y.

Y. Huang, S.-T. Wu, Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028–2030 (2004).
[CrossRef]

Y. Huang, S. T. Wu, Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895–906 (2004).
[CrossRef] [PubMed]

Izaguirre, E. W.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Jhou, F.

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Kaplan, D. L.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Kimball, B. R.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

Kusnetzow, A.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Lawrence, A. F.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Li, Y.

Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
[CrossRef]

Liang, Z.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

Lin, W.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

Liu, Y.

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Liu, Z.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

Lozier, R. H.

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochem. Biophys. Acta 505, 215–278 (1979).

Mathur, D.

S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
[CrossRef]

McCarthy, N. F.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Nakashima, M.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

Naryana Rao, D.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

Ormos, P.

P. Ormos, L. Fábaián, L. Oroszi, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060–4062 (2002).
[CrossRef]

Oroszi, L.

P. Ormos, L. Fábaián, L. Oroszi, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060–4062 (2002).
[CrossRef]

Pan, J. J.

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Podoshvedov, S. A.

S. A. Podoshvedov, “Switching effects in photorefractive crystals belonging to 3m point group of symmetry,” Opt. Commun. 199, 245–255 (2001).
[CrossRef]

Prasad, B. R.

R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
[CrossRef]

Rao, D. V. G. L. N.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Reddy, K. P. J.

R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[CrossRef]

Roach, J. F.

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Roy, S.

C. P. Singh, S. Roy, “Dynamics of all-optical switching in C60 and its application to optical logic gates,” Opt. Eng. 43, 426–431 (2004).
[CrossRef]

S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
[CrossRef]

Schmidt, E.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Seetharaman, S.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Sharma, P.

S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
[CrossRef]

Singh, C. P.

C. P. Singh, S. Roy, “Dynamics of all-optical switching in C60 and its application to optical logic gates,” Opt. Eng. 43, 426–431 (2004).
[CrossRef]

Singh, D.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Song, Q. W.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Stoeckenius, W.

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochem. Biophys. Acta 505, 215–278 (1979).

Stuart, J. A.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Sun, Q.

Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
[CrossRef]

Tian, J.

Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
[CrossRef]

Wang, H.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

Wang, J.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

Weldon, D. N.

F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
[CrossRef]

Wiley, B. J.

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Wise, K. J.

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Wu, P.

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

Wu, S. T.

Wu, S.-T.

Y. Huang, S.-T. Wu, Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028–2030 (2004).
[CrossRef]

Xu, Y.

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Yacoubian, A.

Zhang, G.

Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
[CrossRef]

Zhao, F.

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

Zhao, Y.

Y. Huang, S. T. Wu, Y. Zhao, “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express 12, 895–906 (2004).
[CrossRef] [PubMed]

Y. Huang, S.-T. Wu, Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028–2030 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (7)

H. Wang, Y. Haung, Z. Liu, F. Zhao, W. Lin, J. Wang, Z. Liang, “Ultrafast photoinduced anisotropy and optical switching in azobenzene sidechain polymers,” Appl. Phys. Lett. 82, 3394–3396 (2003).
[CrossRef]

F. Z. Henari, K. H. Cazzini, D. N. Weldon, W. J. Blau, “All optical switching based on intensity induced absorption in C60,” Appl. Phys. Lett. 68, 619–621 (1996).
[CrossRef]

P. Wu, D. V. G. L. N. Rao, B. R. Kimball, M. Nakashima, B. S. DeCristofano, “Enhancement of photoinduced anisotropy and all-optical switching in bacteriorhodopsin films,” Appl. Phys. Lett. 81, 3888–3890 (2002).
[CrossRef]

Y. Huang, S.-T. Wu, Y. Zhao, “Photonic switching based on the photoinduced birefringence in bacteriorhodopsin films,” Appl. Phys. Lett. 84, 2028–2030 (2004).
[CrossRef]

F. J. Aranda, R. Garimella, N. F. McCarthy, D. Naryana Rao, D. V. G. L. N. Rao, Z. Chen, J. A. Akkara, D. L. Kaplan, J. F. Roach, “All-optical light modulation in bacteriorhodopsin films,” Appl. Phys. Lett. 67, 599–601 (1995).
[CrossRef]

P. Ormos, L. Fábaián, L. Oroszi, “Protein-based integrated optical switching and modulation,” Appl. Phys. Lett. 80, 4060–4062 (2002).
[CrossRef]

D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, J. F. Roach, “Mirrorless all-optical bistability in bacteriorhodopsin,” Appl. Phys. Lett. 63, 1489–1491 (1993).
[CrossRef]

Biochem. Biophys. Acta (1)

W. Stoeckenius, R. H. Lozier, R. A. Bogomolni, “Bacteriorhodopsin and the purple membrane of halobacteria,” Biochem. Biophys. Acta 505, 215–278 (1979).

Chem. Rev. (1)

N. Hampp, “Bacteriorhodopsin as a photochromic retinal protein for optical memories,” Chem. Rev. 100, 1755–1776 (2000).
[CrossRef]

Curr. Appl. Phys. (1)

R. K. Banyal, G. M. Hegde, B. R. Prasad, K. P. J. Reddy, “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys. 5, 133–138 (2005).
[CrossRef]

J. Phys. Chem. B (1)

R. R. Birge, N. B. Gillespie, E. W. Izaguirre, A. Kusnetzow, A. F. Lawrence, D. Singh, Q. W. Song, E. Schmidt, J. A. Stuart, S. Seetharaman, K. J. Wise, “Protein-based associative processors and volumetric memories,” J. Phys. Chem. B 103, 10,746–10,766 (1999).
[CrossRef]

Opt. Commun. (2)

S. A. Podoshvedov, “Switching effects in photorefractive crystals belonging to 3m point group of symmetry,” Opt. Commun. 199, 245–255 (2001).
[CrossRef]

S. Roy, P. Sharma, A. K. Dharamadhikari, D. Mathur, “All-optical switching with bacteriorhodopsin,” Opt. Commun. 237, 251–256 (2004).
[CrossRef]

Opt. Eng. (1)

C. P. Singh, S. Roy, “Dynamics of all-optical switching in C60 and its application to optical logic gates,” Opt. Eng. 43, 426–431 (2004).
[CrossRef]

Opt. Express (1)

Opt. Mater. (2)

Y. Li, Q. Sun, J. Tian, G. Zhang, “Optical Boolean logic based on degenerate multi-wave mixing in bR film,” Opt. Mater. 23, 285–288 (2003).
[CrossRef]

C. Gu, Y. Xu, Y. Liu, J. J. Pan, F. Jhou, H. He, “Applications of photorefractive materials in information storage, processing, and communication,” Opt. Mater. 23, 219–227 (2003).
[CrossRef]

Phy. Rev. A (1)

R. L. Fork, “Physics of optical switching,” Phy. Rev. A 26, 2049–2064 (1982).
[CrossRef]

Other (2)

P. N. Prasad, Introduction to Biophotonics (Wiley-Interscience, 2003).
[CrossRef]

F. T. S. Yu, S. Jutamulia, S. Yin, eds., Introduction to Information Optics (Academic, 2001), Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Modified three-level scheme for a BR photocycle. Photoexcitation is designated by solid arrows; double arrows indicate thermal relaxation of intermediate states.

Fig. 2
Fig. 2

Calculated nonlinear absorption curves for 570, 410, and 640 nm signal beams corresponding to absorption maxima of B, M, and P states, respectively, for a wild-type BR film.

Fig. 3
Fig. 3

Experimental layout for optical switching by the pump–probe method: SF, spatial filter with beam expander; P, polarizer; PM, powermeter; M’s, mirrors; ES, electronic shutter; NDFs, neutral-density filters.

Fig. 4
Fig. 4

Pump-induced transparency of a probe beam through a WTN3 film. The pump and probe powers are 5 mW and 5 μW, respectively.

Fig. 5
Fig. 5

Measurement of probe beam transmittance through (a) wild-type and (b) D96N films at various pump powers. Symbols represent the experimental data points; solid curves are values calculated theoretically by use of a three-state model.

Fig. 6
Fig. 6

Probe beam switching at (a) 543 and (b) 633 nm in WTN3 film in response to periodic, square-wave illumination with a 10 mW pump. Pump excitation rates for curves I, II, and III were 0.05, 0.5, and 15 Hz, respectively.

Fig. 7
Fig. 7

Variation of (a) contrast ratio and (b) switching time with pump illumination rate in a wild-type BR sample. The probe beam power was ≈5 μW.

Fig. 8
Fig. 8

Contrast ratio as a function of probe beam intensity at 10 mW pump and 1s illumination rate. Solid curve, power law fit to the experimental data points represented by ⊗.

Tables (3)

Tables Icon

Table 1 Rise- and Decay-Time Constants at Three Probe Wavelengths for WTN3 and D96N BR Samples

Tables Icon

Table 2 Measured Range of Contrast Ratio and Switching Time When the Pump Illumination Period Was Varied from 10 s to 100 ms

Tables Icon

Table 3 Best Fit Parameter Values for the Power-Law Dependence of Contrast Ratio on Probe Beam Intensities in WTN3 (D96N) BR Films

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

B 570 J 625 K 610 L 550 M 410 N 560 O 640 B 570 ,
1 1 2 3 1 , 1 1 2 1 , 1 1 2 3 1.
d N 1 d t = - ( σ 1 s F s + σ 1 p F p ) N 1 + ( σ 2 s F s + σ 2 p F p ) N 2 + ( σ 3 s F s + σ 3 p F p + κ 3 ) N 3 ,
d N 2 d t = - ( σ 2 s F s + σ 2 p F p + κ 2 ) N 2 + ( σ 1 s F s + σ 1 p F p ) N 1 ,
d N 3 d t = - ( σ 3 s F s + σ 3 p F p + κ 3 ) N 3 + κ 2 - 1 N 2 ,
d I s d z = - i σ i s N i I s = - α ( I , λ ) I s ,
α ( I , λ ) = N T a σ 1 p σ 2 s κ 2 - 1 F p + ( σ 1 p F p + σ 1 s F s ) σ 3 s κ 3 - 1 + a [ 1 + ( σ 2 p F p + 2 σ 2 s κ 2 - 1 F s ) ] σ 1 s 1 + a [ ( σ 1 p + σ 2 p ) F p + ( σ 1 s + σ 2 s ) F s ] κ 2 - 1 + [ ( σ 1 p + σ 3 p ) F p + ( σ 1 s + σ 3 s ) F s ] κ 3 - 1 ,
y = y 0 + A 1 exp ( - t / τ 1 ) + A 2 exp ( - t / τ 2 ) ,
T = I s ( pump on ) I s ( pump off ) ,

Metrics