Abstract

Holography has been of increasing interest in recent years, with developments in many areas such as data storage and metrology. Photopolymer materials provide potentially good materials for holographic recording, as they are inexpensive and self-processing. Many experiments have been reported in the literature that describe the diffraction efficiency and angular selectivity of such materials. The majority of these reports discuss the performance of the holographic optical element after the recording stage. It has been observed, however, that sometimes, during exposure, the transmitted recording beam intensities vary with time. A simple phenomenological model is proposed to explain the beam modulation, which incorporates the growth of the phase grating, time-varying absorption effects, the mechanical motion of the plate, the growth of a lossy absorption grating during the recording process, and the effects of nonideal beam ratios.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).
  2. M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Modulation of recording beams during grating formation,” in Photon Management, F. Wyrowski, ed., Proc. SPIE5456, 285–296 (2004).
    [CrossRef]
  3. M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Recording beam modulation during grating formation,” in Organic Holographic Materials and Applications II, K. Meerholtz, ed., Proc. SPIE5521, 149–160 (2004).
    [CrossRef]
  4. W. L. Wilson, InPhase Technologies ( www.inphase-tech.com ; personal communications, 2003).
  5. J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
    [CrossRef]
  6. LabView User’s Manual (National Instruments Corporation, Austin, Tex., January1998), pp. 2–12.
  7. H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  8. S. Caron, J. J. A. Couture, R. A. Lessard, “Real time holographic reinforcement demonstrated by thionine/PVA photoreducible thin layers,” Appl. Opt. 29, 599–603 (1990).
    [CrossRef] [PubMed]
  9. S. Caron, R. A. Lessard, P. C. Roberge, “Photodarkening and partial photobleaching: application to dichromated gelatin,” Appl. Opt. 40, 707–713 (2001).
    [CrossRef]
  10. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
    [CrossRef] [PubMed]
  11. A. V. Galstyan, R. S. Hakobyan, S. Harbour, T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” Electronic-Liq. Cryst. Commun. ( www.e-lc.org/docs/2004_05_05_11_13_17/ ).
  12. Y. L. Lee, C. H. Kwak, J. H. Kwon, Y. S. Im, O. S. Choe, “Observation of a fast formed absorbtion grating and a slowly formed phase grating in undeveloped dichromated gelatin,” Appl. Opt. 40, 3635–3639 (2001).
    [CrossRef]
  13. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
    [CrossRef]
  14. C. Carre, D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450–550 nm domain,” J. Opt. (Paris) 21, 147–152 (1990).
    [CrossRef]
  15. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001).
    [CrossRef]
  16. F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
    [CrossRef]
  17. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  18. E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).
  19. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  20. www.edmundoptics.com .
  21. J. T. Sheridan, “Stacked volume holographic gratings: Part I, Transmission gratings in series,” Optik (Stuttgart) 95, 73–80 (1993).
  22. N. Capolla, R. A. Lessard, “Processing of holograms recorded in Methylene Blue sensitized gelatin,” Appl. Opt. 27, 3008–3012 (1998).
    [CrossRef]
  23. C. Solano, R. A. Lessard, P. C. Roberge, “Methylene Blue sensitized gelatin as a photosensitive medium for conventional and polarizing holography,” Appl. Opt. 26, 1989 (1987).
    [CrossRef] [PubMed]
  24. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
    [CrossRef]
  25. J. T. Sheridan, J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  26. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
    [CrossRef]

2005 (2)

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

2003 (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

2001 (5)

S. Caron, R. A. Lessard, P. C. Roberge, “Photodarkening and partial photobleaching: application to dichromated gelatin,” Appl. Opt. 40, 707–713 (2001).
[CrossRef]

Y. L. Lee, C. H. Kwak, J. H. Kwon, Y. S. Im, O. S. Choe, “Observation of a fast formed absorbtion grating and a slowly formed phase grating in undeveloped dichromated gelatin,” Appl. Opt. 40, 3635–3639 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

2000 (2)

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. T. Sheridan, J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

1998 (1)

1993 (1)

J. T. Sheridan, “Stacked volume holographic gratings: Part I, Transmission gratings in series,” Optik (Stuttgart) 95, 73–80 (1993).

1990 (2)

C. Carre, D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450–550 nm domain,” J. Opt. (Paris) 21, 147–152 (1990).
[CrossRef]

S. Caron, J. J. A. Couture, R. A. Lessard, “Real time holographic reinforcement demonstrated by thionine/PVA photoreducible thin layers,” Appl. Opt. 29, 599–603 (1990).
[CrossRef] [PubMed]

1987 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Beléndez, A.

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Capolla, N.

Caron, S.

Carre, C.

C. Carre, D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450–550 nm domain,” J. Opt. (Paris) 21, 147–152 (1990).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Choe, O. S.

Close, C. E.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

Couture, J. J. A.

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Gallego, S.

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

Gleeson, M. R.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Modulation of recording beams during grating formation,” in Photon Management, F. Wyrowski, ed., Proc. SPIE5456, 285–296 (2004).
[CrossRef]

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Recording beam modulation during grating formation,” in Organic Holographic Materials and Applications II, K. Meerholtz, ed., Proc. SPIE5521, 149–160 (2004).
[CrossRef]

Hecht, E.

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

Im, Y. S.

Kelly, J. V.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kwak, C. H.

Kwon, J. H.

Lawrence, J. R.

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. T. Sheridan, J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Lee, Y. L.

Lessard, R. A.

Lougnot, D. J.

C. Carre, D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450–550 nm domain,” J. Opt. (Paris) 21, 147–152 (1990).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Márquez, A.

Neipp, C.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

O’Neill, F. T.

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Recording beam modulation during grating formation,” in Organic Holographic Materials and Applications II, K. Meerholtz, ed., Proc. SPIE5521, 149–160 (2004).
[CrossRef]

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Modulation of recording beams during grating formation,” in Photon Management, F. Wyrowski, ed., Proc. SPIE5456, 285–296 (2004).
[CrossRef]

Ortuno, M.

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

Ortuño, M.

Pascual, I.

Roberge, P. C.

Sheridan, J. T.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. T. Sheridan, J. R. Lawrence, “Non-local response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

J. T. Sheridan, “Stacked volume holographic gratings: Part I, Transmission gratings in series,” Optik (Stuttgart) 95, 73–80 (1993).

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Modulation of recording beams during grating formation,” in Photon Management, F. Wyrowski, ed., Proc. SPIE5456, 285–296 (2004).
[CrossRef]

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Recording beam modulation during grating formation,” in Organic Holographic Materials and Applications II, K. Meerholtz, ed., Proc. SPIE5521, 149–160 (2004).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

Solano, C.

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Appl. Opt. (5)

Appl. Phys. B (1)

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick holographic gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Opt. (Paris) (1)

C. Carre, D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450–550 nm domain,” J. Opt. (Paris) 21, 147–152 (1990).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. B (1)

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. B 22, 407–416 (2005).
[CrossRef]

Opt. Eng. (1)

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Thickness variation of self-processing acrylamide based photopolymer and reflection holography,” Opt. Eng. 40, 533–539 (2001).
[CrossRef]

Opt. Express (1)

Optik (Stuttgart) (3)

F. T. O’Neill, J. R. Lawrence, J. T. Sheridan, “Automised testing and recording of holographic optical element arrays,” Optik (Stuttgart) 111, 459–467 (2000).

J. R. Lawrence, F. T. O’Neill, J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001).
[CrossRef]

J. T. Sheridan, “Stacked volume holographic gratings: Part I, Transmission gratings in series,” Optik (Stuttgart) 95, 73–80 (1993).

Other (10)

LabView User’s Manual (National Instruments Corporation, Austin, Tex., January1998), pp. 2–12.

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, C. Neipp, “Temporal and non-ideal behaviour in photopolymers,” in Opto-Ireland 2005: Photonic Engineering, B. W. Bowe, G. Byrne, A. J. Flanigan, T. J. Glynn, J. Magee, G. M. O’Connor, R. O’Dowd, G. D. O’Sullivan, J. T. Sheridan, eds., Proc. SPIE5827, 95–106 (2005).
[CrossRef]

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

E. Hecht, Optics, 2nd ed. (Addison-Wesley, 1987).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

www.edmundoptics.com .

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Modulation of recording beams during grating formation,” in Photon Management, F. Wyrowski, ed., Proc. SPIE5456, 285–296 (2004).
[CrossRef]

M. R. Gleeson, F. T. O’Neill, J. T. Sheridan, “Recording beam modulation during grating formation,” in Organic Holographic Materials and Applications II, K. Meerholtz, ed., Proc. SPIE5521, 149–160 (2004).
[CrossRef]

W. L. Wilson, InPhase Technologies ( www.inphase-tech.com ; personal communications, 2003).

A. V. Galstyan, R. S. Hakobyan, S. Harbour, T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” Electronic-Liq. Cryst. Commun. ( www.e-lc.org/docs/2004_05_05_11_13_17/ ).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the recording geometry used and the probe beam.

Fig. 2
Fig. 2

Transmitted exposing beam intensities. Variation with time of the intensities can be seen for the nonunity beam ratio.

Fig. 3
Fig. 3

Single beam (standard layer) fit to the loss data with time.

Fig. 4
Fig. 4

Change in absorption with time α0(t).

Fig. 5
Fig. 5

Example of the form that α1(t) might be expected to take with time, where p = 0.05 and q = 0.08.

Fig. 6
Fig. 6

Motion of the plate extracted from experimental data for both beams with a fit to the motion including extrapolation to estimate the motion before saturation.

Fig. 7
Fig. 7

Phase variations with time for the R beam (unwrapped). A similar plot was obtained for the S beam.

Fig. 8
Fig. 8

Experimental data for the intensity of the R beam (filled circles), theoretically fitted to the data with κi ≠ 0 (thin dashed line), and including the lossy grating, where κi ≠ 0 (thick dashed curve).

Fig. 9
Fig. 9

S beam intensity data, with an almost unity beam ratio (filled circles), with a theoretical fit to the data where κi = 0 (dashed line) and a fit to the data including the lossy grating, i.e., where κi ≠ 0 (solid curve).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ɛ = ɛ 0 + ɛ 1 cos ( K x ) ,
σ = σ 0 - σ 1 cos ( K x ) ,
κ = 1 4 [ 2 π λ ɛ 1 ( ɛ 0 ) 1 / 2 + j μ c σ 1 ( ɛ 0 ) 1 / 2 ] ,
κ = π n 1 λ + j α 1 2 = κ r + j κ i ,
α 0 ( t ) = - log e { 1 - exp [ - a 0 - a 1 ( t - 2 ) - a 2 ( t - 2 ) 2 ] } 2 × d ,
α 1 ( t ) = exp ( - p t ) [ 1 - exp ( - q t ) ] .
ν ( t ) = sin - 1 [ η FC ( t ) ] ,
ν ( t ) = F 0 [ 1 - exp ( - f 1 t + f 2 t 2 ) ] .
ν ( t ) = κ r ( t ) d cos θ B .
S ( 0 ) = s × exp [ - i K d x ( t ) ] ,
R ( 0 ) = r × exp [ + i K d x ( t ) ] ,
c R ( z ) + i κ r S ( z ) = 0 ,
c S ( z ) + i κ r R ( z ) = 0 ,
I R ( t ) = 1 2 { r 2 + s 2 + ( r 2 - s 2 ) cos ( 2 κ r d c ) - 2 r s sin ( 2 κ r d c ) sin [ 2 K d x ( t ) ] } ,
I S ( t ) = 1 2 { r 2 + s 2 + ( - r 2 - s 2 ) cos ( 2 κ r d c ) - 2 r s sin ( 2 κ r d c ) sin [ 2 K d x ( t ) ] } .
ϕ ( t ) = a + b t + c t 2 + d t 3 .
d x ( t ) = A + B exp ( - C t ) sin [ ϕ ( t ) ] .
c R ( z ) + i [ κ r ( t ) + i κ i ( t ) ] S ( z ) + α 0 ( t ) R ( z ) = 0 ,
c S ( z ) + i [ κ r ( t ) + i κ i ( t ) ] R ( z ) + α 0 ( t ) S ( z ) = 0.
I R ( t ) = 1 4 exp { - 2 d [ α 0 ( t ) + κ i ( t ) ] c } × ( { 1 + exp [ 4 d κ i ( t ) c ] } ( r 2 + s 2 ) + 2 { - 1 + exp [ 4 d κ i ( t ) c ] } { r s cos [ 2 K d x ( t ) ] } + 2 exp [ 2 d κ i ( t ) c ] { ( r - s ) ( r + s ) cos [ 2 d κ r ( t ) c ] } - 2 r s sin [ 2 K d x ( t ) ] sin [ 2 d κ r ( t ) c ] ) ,
I S ( t ) = 1 r exp { - 2 d [ α 0 ( t ) + κ i ( t ) ] c } × ( { 1 + exp [ 4 d κ i ( t ) c ] } ( r 2 + s 2 ) + 2 { - 1 + exp [ 4 d κ i ( t ) c ] } { r s cos [ 2 K d x ( t ) ] } - 2 exp [ 2 d κ i ( t ) c ] { ( r - s ) ( r + s ) cos [ 2 d κ r ( t ) c ] } - 2 r s sin [ 2 K d x ( t ) ] sin [ 2 d κ r ( t ) c ] ) .

Metrics