Abstract

Recent advances in optical imaging systems and systemically administered fluorescent probes have significantly improved the ways by which we can visualize proteomics in vivo. A key component in the design of fluorescent probes is a favorable biodistribution, i.e., localization only in the targeted diseased tissue, in order to achieve high contrast and good detection characteristics. In practice, however, there is always some level of background fluorescence present that could result in distorted or obscured visualization and quantification of measured signals. In this study we observe the effects of background fluorescence in tomographic imaging. We demonstrate that increasing levels of background fluorescence result in artifacts when using a linear perturbation algorithm, along with a significant loss of image fidelity and quantification accuracy. To correct for effects of background fluorescence, we have applied cubic polynomial fits to bulk raw measurements obtained from spatially homogeneous and heterogeneous phantoms. We show that subtraction of the average fluorescence response from the raw data before reconstruction can improve image quality and quantification accuracy as shown in relatively homogeneous or heterogeneous phantoms. Subtraction methods thus appear to be a promising route for adaptively correcting nonspecific background fluorochrome distribution.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
    [CrossRef] [PubMed]
  2. M. A. Oleary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef]
  3. B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]
  4. M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
    [CrossRef]
  5. H. B. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5343 (1998).
    [CrossRef]
  6. J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
    [CrossRef] [PubMed]
  7. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
    [CrossRef]
  8. R. Barbour, S. Blattman, T. Panetta, in Dynamic Optical Tomography: a New Approach for Investigating Tissue-Vascular Coupling in Large Tissue Structures, OSA Technical Digest (Optical Society of America, 2000), pp. 336–338.
  9. D. A. Boas, L. E. Campbell, A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
    [CrossRef] [PubMed]
  10. A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
    [CrossRef] [PubMed]
  11. M. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
    [CrossRef]
  12. V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
    [CrossRef]
  13. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
    [CrossRef] [PubMed]
  14. E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
    [CrossRef] [PubMed]
  15. V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
    [CrossRef]
  16. H. R. Herschman, “Molecular imaging: looking at problems, seeing solutions,” Science 302, 605–608 (2003).
    [CrossRef] [PubMed]
  17. R. Weissleder, V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
    [CrossRef] [PubMed]

2004 (2)

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

2003 (3)

H. R. Herschman, “Molecular imaging: looking at problems, seeing solutions,” Science 302, 605–608 (2003).
[CrossRef] [PubMed]

R. Weissleder, V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

2001 (1)

1999 (3)

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (2)

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

1996 (1)

1995 (2)

M. O’Leary, D. Boas, B. Chance, A. Yodh, “Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography,” Opt. Lett. 20, 426–428 (1995).
[CrossRef]

D. A. Boas, L. E. Campbell, A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef] [PubMed]

Alfano, R. R.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

Barbour, R.

R. Barbour, S. Blattman, T. Panetta, in Dynamic Optical Tomography: a New Approach for Investigating Tissue-Vascular Coupling in Large Tissue Structures, OSA Technical Digest (Optical Society of America, 2000), pp. 336–338.

Barbour, R. L.

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Blattman, S.

R. Barbour, S. Blattman, T. Panetta, in Dynamic Optical Tomography: a New Approach for Investigating Tissue-Vascular Coupling in Large Tissue Structures, OSA Technical Digest (Optical Society of America, 2000), pp. 336–338.

Boas, D.

Boas, D. A.

M. A. Oleary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef]

D. A. Boas, L. E. Campbell, A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef] [PubMed]

Bogdanov, A.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Campbell, L. E.

D. A. Boas, L. E. Campbell, A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef] [PubMed]

Chance, B.

Chang, J.

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Das, B. B.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Dougherty, D. E.

Eppstein, M. J.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

Godavarty, A.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

Graber, H. L.

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Graves, E.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef] [PubMed]

Gurfinkel, M.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

Herschman, H. R.

H. R. Herschman, “Molecular imaging: looking at problems, seeing solutions,” Science 302, 605–608 (2003).
[CrossRef] [PubMed]

Hielscher, A. H.

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Jiang, H. B.

Josephson, A. L.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

Klose, A. D.

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Li, X. D.

Liu, F.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Ntziachristos, V.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef] [PubMed]

R. Weissleder, V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

O’Leary, M.

Oleary, M. A.

Panetta, T.

R. Barbour, S. Blattman, T. Panetta, in Dynamic Optical Tomography: a New Approach for Investigating Tissue-Vascular Coupling in Large Tissue Structures, OSA Technical Digest (Optical Society of America, 2000), pp. 336–338.

Ripoll, J.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef] [PubMed]

Roy, R.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

Schellenberger, E.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

Sevick-Muraca, E. M.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, T. L. Troy, E. M. Sevick-Muraca, “Biomedical optical tomography using dynamic parameterization and Bayesian conditioning on photon migration measurements,” Appl. Opt. 38, 2138–2150 (1999).
[CrossRef]

Thompson, A. B.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

Troy, T. L.

Tung, C.

V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

R. Weissleder, V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation,” Opt. Lett. 26, 893–895 (2001).
[CrossRef]

Yessayan, D.

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

Yodh, A.

Yodh, A. G.

M. A. Oleary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
[CrossRef]

D. A. Boas, L. E. Campbell, A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef] [PubMed]

Zhang, C.

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

Appl. Opt. (2)

IEEE Trans. Biomed. Eng. (1)

J. Chang, H. L. Graber, R. L. Barbour, “Imaging of fluorescence in highly scattering media,” IEEE Trans. Biomed. Eng. 44, 810–822 (1997).
[CrossRef] [PubMed]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41–R93 (1999).
[CrossRef]

J. Biomed. Opt. (1)

A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, E. M. Sevick-Muraca, “Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies,” J. Biomed. Opt. 9, 488–496 (2004).
[CrossRef] [PubMed]

Med. Phys. (2)

E. Graves, J. Ripoll, R. Weissleder, V. Ntziachristos, “A sub-millimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef] [PubMed]

A. D. Klose, A. H. Hielscher, “Iterative reconstruction scheme for optical tomography based on the equation of radiative transfer,” Med. Phys. 26, 1698–1707 (1999).
[CrossRef] [PubMed]

Nat. Med. (2)

V. Ntziachristos, C. Tung, C. Bremer, R. Weissleder, “Fluorescence-mediated tomography resolves protease activity in vivo,” Nat. Med. 8, 757–760 (2002).
[CrossRef] [PubMed]

R. Weissleder, V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. A. Boas, L. E. Campbell, A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75, 1855–1858 (1995).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Ntziachristos, E. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, A. L. Josephson, R. Weissleder, “Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V–Cy5.5 conjugate,” Proc. Natl. Acad. Sci. U.S.A. 101, 12294–12299 (2004).
[CrossRef]

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Science (1)

H. R. Herschman, “Molecular imaging: looking at problems, seeing solutions,” Science 302, 605–608 (2003).
[CrossRef] [PubMed]

Other (1)

R. Barbour, S. Blattman, T. Panetta, in Dynamic Optical Tomography: a New Approach for Investigating Tissue-Vascular Coupling in Large Tissue Structures, OSA Technical Digest (Optical Society of America, 2000), pp. 336–338.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a FMT imaging setup. Light from a 670 nm laser diode (iii) is routed with a two-channel optical switch (iv) to either a single source for reflectance imaging (v) or a multichannel optical switch for FMT (viii). A beam splitter (vi) redirects a small portion of that light to the front of the chamber to serve as a laser power reference. The source fibers transilluminate the imaging chamber (i), where the phantom is suspended from an adjustable arm. Light emitted from the photon is imaged through the front window of the chamber (ii) by a CCD camera (ix) with appropriate bandpass filters (x).

Fig. 2
Fig. 2

Experimental setup in an imaging chamber (top view). (a) The phantom, a 5 mm diameter hollow vinyl sphere containing 200 nM fluorochrome, was suspended against the front plate of the imaging chamber, which was filled with 1% Intralipid fluid and homogeneous background concentrations of Cy5.5 fluorochrome (see Section 2). (b) Same as (a) but with the sphere suspended in the middle of the chamber. (c) To simulate heterogeneous background fluorescence, four tubes were inserted containing fluorescence concentrations ranging from 0 to 90 nM (see Table 1) while the background level of fluorochrome in the chamber was held constant at 30 nM. In all the experiments the concentration of fluorochrome in the sphere was held constant at 200 nM.

Fig. 3
Fig. 3

Illustration of background fluorescence correction for homogeneous phantom source 1, showing the normalized Born field collected in the absence of background fluorescence (filled circles) and with 30 nM background fluorochrome (+ symbols). The solid black curve is a cubic polynomial fit to the data with background fluorescence. The corrected Born field (diamonds) is shown after subtraction of the cubic polynomial from the data. The cubic polynomial is subtracted from all of the sources, yielding Born values that are nearly identical to that of the case without background.

Fig. 4
Fig. 4

Representative reconstructed tomographic slices of homogeneous background experiments with a sphere at (a) the front of the chamber (slice depth of 2.3 mm) and (b) the middle of the chamber (slice depth of 8.5 mm). The different background concentrations used are arranged in labeled columns, with the uncorrected (Raw) and corrected reconstructions grouped in labeled rows.

Fig. 5
Fig. 5

Quantification of homogeneous experiments with (a) a sphere at the front of the chamber and (b) a sphere in the middle of the chamber. Black bars indicate relative reconstructed concentrations for uncorrected reconstructions, and gray bars indicate concentrations from corrected reconstructions. In both (a) and (b) the reconstructed object concentration is normalized to the reconstructed object concentration obtained from an experiment with no background fluorescence.

Fig. 6
Fig. 6

Representative slices of heterogeneous background reconstruction. (a) Fluorescence reflectance image of the phantom without Intralipid showing blocking tubes obscuring a direct view of (b) reconstructed slices taken at a chamber depth of 8.5 mm with labeled columns to indicate experiment number (see Table 1) and with the top row (Raw) containing uncorrected slices and the bottom row containing slices reconstructed with background correction.

Fig. 7
Fig. 7

Quantification of the heterogeneous background phantom for uncorrected (black bars) and corrected (gray bars) reconstructions.

Tables (1)

Tables Icon

Table 1 Heterogeneous Background Setup: Fluorescence Concentration Combinations for the Four Tubes of the Heterogeneous Phantom Shown in Fig. 2(c)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

U n B ( r s , r d ) = U f l ( r s , r d ) - Θ f U i n c ( r s , r d ) U i n c ( r s , r d ) ,

Metrics