Abstract

A scheme for optical phased-array beam steering controlled by wavelength is proposed. In this scheme, the optical scanning device consists of arrayed optical waveguides with specific length differences, by which the desired phase slope that results in optical beam steering is formed at the ends of the waveguides and can be changed by varying the optical wavelength. By introducing the concept of irregularly spaced arrays, sidelobes can be dramatically suppressed regardless of large center-to-center interelement spacing. The absolute phase difference between adjacent elements plays a vital role in optical beam steering, and the relation between the nonuniform length difference and the corresponding center-to-center spacing among elements is found.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Meyer, “Optical beam steering using a multichannel lithium tantalate crystal,” Appl. Opt. 11, 613–616 (1972).
    [Crossref] [PubMed]
  2. Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
    [Crossref]
  3. D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
    [Crossref]
  4. F. Vasey, F. K. Reinhart, R. Houdre, J. M. Stauffer, “Spatial optical beam steering with an AlGaAs integrated phased array,” Appl. Opt. 32, 3220–3232 (1993).
    [Crossref] [PubMed]
  5. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
    [Crossref]
  6. J. A. Thomas, Y. Fainman, “Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator,” Opt. Lett. 20, 1510–1512 (1995).
    [Crossref] [PubMed]
  7. J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53, 1375–1377 (1988).
    [Crossref]
  8. J. A. Thomas, Y. Fainman, “Optimal cascade operation of optical phased-array beam deflectors,” Appl. Opt. 37, 6196–6212 (1998).
    [Crossref]
  9. H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).
  10. H. Dammann, G. Rabe, “Flexible digital-phase reflection gratings for planar micro-optic wavelength-division-multiplexer,” in Micro-Optics, A. V. Scheggi, ed., Proc. SPIE1014, 151–156 (1989).
    [Crossref]
  11. A. Ishimaru, H.-S. Tuan, “Theory of frequency scanning of antennas,” IEEE Trans. Antennas Propag. 10, 144–150 (1962).
    [Crossref]

1998 (1)

1996 (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

1995 (1)

1993 (1)

1991 (1)

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

1988 (1)

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

1979 (1)

H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).

1973 (1)

Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
[Crossref]

1972 (1)

1962 (1)

A. Ishimaru, H.-S. Tuan, “Theory of frequency scanning of antennas,” IEEE Trans. Antennas Propag. 10, 144–150 (1962).
[Crossref]

Abeles, J. H.

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

Birbeck, J. C. H.

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Dammann, H.

H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).

H. Dammann, G. Rabe, “Flexible digital-phase reflection gratings for planar micro-optic wavelength-division-multiplexer,” in Micro-Optics, A. V. Scheggi, ed., Proc. SPIE1014, 151–156 (1989).
[Crossref]

Deri, R. J.

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Fainman, Y.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Heaton, J. M.

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

Hilton, K. P.

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Houdre, R.

Hughes, B. T.

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

Ishimaru, A.

A. Ishimaru, H.-S. Tuan, “Theory of frequency scanning of antennas,” IEEE Trans. Antennas Propag. 10, 144–150 (1962).
[Crossref]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Meyer, R. A.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Ninomiya, Y.

Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
[Crossref]

Rabe, G.

H. Dammann, G. Rabe, “Flexible digital-phase reflection gratings for planar micro-optic wavelength-division-multiplexer,” in Micro-Optics, A. V. Scheggi, ed., Proc. SPIE1014, 151–156 (1989).
[Crossref]

Reinhart, F. K.

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Stauffer, J. M.

Taylor, D. J.

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

Thomas, J. A.

Tuan, H.-S.

A. Ishimaru, H.-S. Tuan, “Theory of frequency scanning of antennas,” IEEE Trans. Antennas Propag. 10, 144–150 (1962).
[Crossref]

Vasey, F.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Wight, D. R.

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

D. R. Wight, J. M. Heaton, B. T. Hughes, J. C. H. Birbeck, K. P. Hilton, D. J. Taylor, “Novel phased array optical scanning device implemented using GaAs/AlGaAs technology,” Appl. Phys. Lett. 59, 899–901 (1991).
[Crossref]

J. H. Abeles, R. J. Deri, “Suppression of sidelobes in the far-field radiation patterns of optical waveguide arrays,” Appl. Phys. Lett. 53, 1375–1377 (1988).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Ninomiya, “Ultrahigh resolving electrooptic prism array light deflectors,” IEEE J. Quantum Electron. QE-9, 791–795 (1973).
[Crossref]

IEEE Trans. Antennas Propag. (1)

A. Ishimaru, H.-S. Tuan, “Theory of frequency scanning of antennas,” IEEE Trans. Antennas Propag. 10, 144–150 (1962).
[Crossref]

Opt. Lett. (1)

Optik (1)

H. Dammann, “Spectral characteristic of stepped-phase gratings,” Optik 53, 409–417 (1979).

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Other (1)

H. Dammann, G. Rabe, “Flexible digital-phase reflection gratings for planar micro-optic wavelength-division-multiplexer,” in Micro-Optics, A. V. Scheggi, ed., Proc. SPIE1014, 151–156 (1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Scheme for a nonuniform spaced array of optical waveguides. (b) Calculation model of deflected light. ΔΦj and dj are respectively the phase difference and the spacing between the (j + 1)th and the jth waveguides at the end of the array.

Fig. 2
Fig. 2

Deflective angle versus wavelength. Wavelength varies from 1.534 to 1.566 μm, corresponding to the radiative angle of the mainlobe from 90° to −90°.

Fig. 3
Fig. 3

Suppression ratio versus number of elements.

Fig. 4
Fig. 4

Suppression ratio versus errors when N = 500. The same level of errors in element length differences and element spacings is assumed in the simulation.

Tables (1)

Tables Icon

Table 1 Values of ki Randomly Chosen for Simulation in Fig. 2, from Which di and Δli Can Be Found

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( θ ) = S ( θ ) × F ( θ ) ,
n Δ l i = k i λ 0 + d i sin 0 ° = k i λ 0 ,
n Δ l i = k 1 λ + d i sin θ = k i λ + k i Δ λ .
k 1 d 1 = k 2 d 2 = = k N - 1 d N - 1 ,
θ = arcsin k i Δ λ d i .
k i Δ λ max = d i ,
sin θ - u i = k i Δ λ - ( u + v ) λ d i ,             if | k i Δ λ - ( u + v ) λ d i | 1 ,
sin θ - u + 1 i = k i Δ λ - ( u + v - 1 ) λ d i ,             if | k i Δ λ - ( u + v - 1 ) λ d i | 1 ,
sin θ - u + 2 i = k i Δ λ - ( u + v - 2 ) λ d i ,
sin θ v - 1 i = k i Δ λ - λ d i ,
sin θ v i = k i Δ λ d i ,
sin θ v + 1 i = k i Δ λ + λ d i ,
sin θ u - 1 i = k i Δ λ + ( u - v - 1 ) λ d i ,
sin θ u i = k i Δ λ + ( u - v ) λ d i ,             if | k i Δ λ + ( u - v ) λ d i | 1.

Metrics