Abstract

A theoretical model is developed to study the polarization mode dispersion effect in an electro-optic Mach–Zehnder interferometric (MZI) modulator. The Stokes parameters and differential group delay (DGD) of the output light of a MZI modulator can be analytically derived with the proposed model, which is based on a three-dimensional Maxwell’s wave equation approach. The theoretical model is validated to the extent possible by comparing the theoretical results of the Stokes parameters and DGD with experimental measurements that are based on the wavelength-scanning method and the Jones matrix eigenanalysis method.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 1984), pp. 220–317.
  2. A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989), pp. 461–500.
    [Crossref]
  3. D. Derickson, ed., Fiber Optic Test and Measurement (Prentice-Hall, 1998), pp. 487–518.
  4. A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).
  5. N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
    [Crossref]
  6. G. J. Foschini, C. D. Poole, “Statistical theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
    [Crossref]
  7. B. W. Hakki, “Polarization mode dispersion in a single mode fiber,” J. Lightwave Technol. 14, 2202–2208 (1996).
    [Crossref]
  8. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 326–371.
  9. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
    [Crossref]
  10. R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
    [Crossref]
  11. G. E. Betts, L. M. Johnson, C. H. Cox, “High-sensitivity lumped-element bandpass modulators in LiNbO3,” J. Lightwave Technol. 7, 2078–2083 (1989).
    [Crossref]
  12. E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech. 47, 2271–2279 (1999).
    [Crossref]
  13. K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
    [Crossref]
  14. K. Yoshida, A. Minami, Y. Kanda, “Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode,” IEEE Trans. Appl. Supercond. 7, 3508–3511 (1997).
    [Crossref]
  15. E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
    [Crossref]
  16. J. Hauden, H. Porte, J.-P. Goedgebuer, “Quasi-polarization-independent Mach-Zehnder coherence modulator/demodulator integrated in Z-propagating lithium niobate,” IEEE J. Quantum Electron. QE-30, 2325–2331 (1994).
    [Crossref]
  17. C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
    [Crossref]
  18. C. W. Tarn, “Spatial Fourier transform approach to the study of polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media,” J. Opt. Soc. Am. A 14, 2231–2242 (1997).
    [Crossref]
  19. P. P. Banerjee, T. C. Poon, Principles of Applied Optics (Aksen Irwin, 1991), pp. 50–120.
  20. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989), pp. 282–338.
  21. L. Desmarais, Applied Electro Optics (Prentice-Hall, 1998), pp. 106–118.
  22. S. Huard, Polarization of Light (Wiley, 1996), pp. 1–35.
  23. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977), pp. 1–60.
  24. R. A. Chipman, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds., Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, pp. 22.1–22.36.
  25. JDS Uniphase Corp., 10 GB/s Amplitude Modulator, http://www.jdsu.com (January2004).
  26. H. Poincaré, Theorie Mathematique de la Lumiere (Gauthiers-Villars, 1892), Vol. 2, Chap. 12.

2000 (2)

A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

1999 (2)

E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech. 47, 2271–2279 (1999).
[Crossref]

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

1998 (1)

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

1997 (3)

K. Yoshida, A. Minami, Y. Kanda, “Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode,” IEEE Trans. Appl. Supercond. 7, 3508–3511 (1997).
[Crossref]

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

C. W. Tarn, “Spatial Fourier transform approach to the study of polarization changing and beam profile deformation of light during Bragg acousto-optic interaction with longitudinal and shear ultrasonic waves in isotropic media,” J. Opt. Soc. Am. A 14, 2231–2242 (1997).
[Crossref]

1996 (1)

B. W. Hakki, “Polarization mode dispersion in a single mode fiber,” J. Lightwave Technol. 14, 2202–2208 (1996).
[Crossref]

1994 (1)

J. Hauden, H. Porte, J.-P. Goedgebuer, “Quasi-polarization-independent Mach-Zehnder coherence modulator/demodulator integrated in Z-propagating lithium niobate,” IEEE J. Quantum Electron. QE-30, 2325–2331 (1994).
[Crossref]

1993 (2)

K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
[Crossref]

N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
[Crossref]

1991 (1)

G. J. Foschini, C. D. Poole, “Statistical theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[Crossref]

1989 (1)

G. E. Betts, L. M. Johnson, C. H. Cox, “High-sensitivity lumped-element bandpass modulators in LiNbO3,” J. Lightwave Technol. 7, 2078–2083 (1989).
[Crossref]

Ackerman, E. I.

E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech. 47, 2271–2279 (1999).
[Crossref]

Armbruster, V.

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Azzam, R. M. A.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977), pp. 1–60.

Banerjee, P. P.

P. P. Banerjee, T. C. Poon, Principles of Applied Optics (Aksen Irwin, 1991), pp. 50–120.

Bashara, N. M.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977), pp. 1–60.

Betts, G. E.

G. E. Betts, L. M. Johnson, C. H. Cox, “High-sensitivity lumped-element bandpass modulators in LiNbO3,” J. Lightwave Technol. 7, 2078–2083 (1989).
[Crossref]

Bishoff, J. C.

N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
[Crossref]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Carenco, A.

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

Chen, C.-C.

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

Collado, C.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Cox, C. H.

G. E. Betts, L. M. Johnson, C. H. Cox, “High-sensitivity lumped-element bandpass modulators in LiNbO3,” J. Lightwave Technol. 7, 2078–2083 (1989).
[Crossref]

Dal Forno, A. O.

A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).

Desmarais, L.

L. Desmarais, Applied Electro Optics (Prentice-Hall, 1998), pp. 106–118.

Fabrega, L.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Fontcuberta, J.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Foschini, G. J.

G. J. Foschini, C. D. Poole, “Statistical theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[Crossref]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Garcia, A.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Ghatak, A.

A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989), pp. 461–500.
[Crossref]

Gisin, N.

N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
[Crossref]

Goedgebuer, J.-P.

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

J. Hauden, H. Porte, J.-P. Goedgebuer, “Quasi-polarization-independent Mach-Zehnder coherence modulator/demodulator integrated in Z-propagating lithium niobate,” IEEE J. Quantum Electron. QE-30, 2325–2331 (1994).
[Crossref]

Grencavich, R.

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

Hakki, B. W.

B. W. Hakki, “Polarization mode dispersion in a single mode fiber,” J. Lightwave Technol. 14, 2202–2208 (1996).
[Crossref]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Harackiewicz, F.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989), pp. 282–338.

Hauden, J.

J. Hauden, H. Porte, J.-P. Goedgebuer, “Quasi-polarization-independent Mach-Zehnder coherence modulator/demodulator integrated in Z-propagating lithium niobate,” IEEE J. Quantum Electron. QE-30, 2325–2331 (1994).
[Crossref]

Huard, S.

S. Huard, Polarization of Light (Wiley, 1996), pp. 1–35.

Ikeda, K.

K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
[Crossref]

Johnson, L. M.

G. E. Betts, L. M. Johnson, C. H. Cox, “High-sensitivity lumped-element bandpass modulators in LiNbO3,” J. Lightwave Technol. 7, 2078–2083 (1989).
[Crossref]

Judd, F. F.

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

Kanda, Y.

K. Yoshida, A. Minami, Y. Kanda, “Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode,” IEEE Trans. Appl. Supercond. 7, 3508–3511 (1997).
[Crossref]

K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
[Crossref]

Kershner, R. C.

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Minami, A.

K. Yoshida, A. Minami, Y. Kanda, “Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode,” IEEE Trans. Appl. Supercond. 7, 3508–3511 (1997).
[Crossref]

Minford, W. J.

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

Moyer, R. S.

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989), pp. 282–338.

O’Callaghan, J. M.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Paradisi, A.

A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).

Passy, R.

A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).

N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
[Crossref]

Perny, B.

N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
[Crossref]

Poincaré, H.

H. Poincaré, Theorie Mathematique de la Lumiere (Gauthiers-Villars, 1892), Vol. 2, Chap. 12.

Poole, C. D.

G. J. Foschini, C. D. Poole, “Statistical theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[Crossref]

Poon, T. C.

P. P. Banerjee, T. C. Poon, Principles of Applied Optics (Aksen Irwin, 1991), pp. 50–120.

Porte, H.

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

J. Hauden, H. Porte, J.-P. Goedgebuer, “Quasi-polarization-independent Mach-Zehnder coherence modulator/demodulator integrated in Z-propagating lithium niobate,” IEEE J. Quantum Electron. QE-30, 2325–2331 (1994).
[Crossref]

Pous, R.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Rius, J.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Rozan, E.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Rubi, R.

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

Saito, K.

K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
[Crossref]

Smith, R. W.

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989), pp. 282–338.

Tarn, C. W.

Thyagarajan, K.

A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989), pp. 461–500.
[Crossref]

von der Weid, J. P.

A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 1984), pp. 220–317.

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 326–371.

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 1984), pp. 220–317.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

Yoshida, K.

K. Yoshida, A. Minami, Y. Kanda, “Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode,” IEEE Trans. Appl. Supercond. 7, 3508–3511 (1997).
[Crossref]

K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Hauden, H. Porte, J.-P. Goedgebuer, “Quasi-polarization-independent Mach-Zehnder coherence modulator/demodulator integrated in Z-propagating lithium niobate,” IEEE J. Quantum Electron. QE-30, 2325–2331 (1994).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. QE-6, 69–82 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (2)

N. Gisin, R. Passy, J. C. Bishoff, B. Perny, “Experimental investigations of the statistical properties of polarization mode dispersion in single mode fibers,” IEEE Photon. Technol. Lett. 5, 819–821 (1993).
[Crossref]

C.-C. Chen, H. Porte, A. Carenco, J.-P. Goedgebuer, V. Armbruster, “Phase correction by laser ablation of a polarization LiNbO3 Mach-Zehnder modulator,” IEEE Photon. Technol. Lett. 9, 1361–1363 (1997).
[Crossref]

IEEE Trans. Appl. Supercond. (3)

K. Yoshida, K. Ikeda, K. Saito, Y. Kanda, “Application of superconducting striplines to traveling-wave type LiNbO3 optical modulator,” IEEE Trans. Appl. Supercond. 3, 2792–2795 (1993).
[Crossref]

K. Yoshida, A. Minami, Y. Kanda, “Traveling-wave type LiNbO3 optical modulator with a superconducting coplanar waveguide electrode,” IEEE Trans. Appl. Supercond. 7, 3508–3511 (1997).
[Crossref]

E. Rozan, C. Collado, A. Garcia, J. M. O’Callaghan, R. Pous, L. Fabrega, J. Rius, R. Rubi, J. Fontcuberta, F. Harackiewicz, “Design and fabrication of coplanar YBCO structures on lithium niobate,” IEEE Trans. Appl. Supercond. 9, 2866–2869 (1999).
[Crossref]

IEEE Trans. Compon. Packag. Technol. (1)

R. S. Moyer, R. Grencavich, F. F. Judd, R. C. Kershner, W. J. Minford, R. W. Smith, “Design and qualification of hermetically packaged lithium niobate optical modulator,” IEEE Trans. Compon. Packag. Technol. 21, 130–135 (1998).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

E. I. Ackerman, “Broad-band linearization of a Mach-Zehnder electrooptic modulator,” IEEE Trans. Microwave Theory Tech. 47, 2271–2279 (1999).
[Crossref]

J. Lightwave Technol. (4)

A. O. Dal Forno, A. Paradisi, R. Passy, J. P. von der Weid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” J. Lightwave Technol. 12, 296–298 (2000).

G. E. Betts, L. M. Johnson, C. H. Cox, “High-sensitivity lumped-element bandpass modulators in LiNbO3,” J. Lightwave Technol. 7, 2078–2083 (1989).
[Crossref]

G. J. Foschini, C. D. Poole, “Statistical theory of polarization dispersion in single-mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[Crossref]

B. W. Hakki, “Polarization mode dispersion in a single mode fiber,” J. Lightwave Technol. 14, 2202–2208 (1996).
[Crossref]

J. Opt. Soc. Am. A (1)

Other (12)

P. P. Banerjee, T. C. Poon, Principles of Applied Optics (Aksen Irwin, 1991), pp. 50–120.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, 1989), pp. 282–338.

L. Desmarais, Applied Electro Optics (Prentice-Hall, 1998), pp. 106–118.

S. Huard, Polarization of Light (Wiley, 1996), pp. 1–35.

R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1977), pp. 1–60.

R. A. Chipman, M. Bass, E. W. Van Stryland, D. R. Williams, W. L. Wolfe, eds., Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 2, pp. 22.1–22.36.

JDS Uniphase Corp., 10 GB/s Amplitude Modulator, http://www.jdsu.com (January2004).

H. Poincaré, Theorie Mathematique de la Lumiere (Gauthiers-Villars, 1892), Vol. 2, Chap. 12.

A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997), pp. 326–371.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 1984), pp. 220–317.

A. Ghatak, K. Thyagarajan, Optical Electronics (Cambridge U. Press, 1989), pp. 461–500.
[Crossref]

D. Derickson, ed., Fiber Optic Test and Measurement (Prentice-Hall, 1998), pp. 487–518.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Traveling-wave-type E-O phase shifter.

Fig. 2
Fig. 2

Traveling-wave-type E-O MZI modulator with x cut and y propagation.

Fig. 3
Fig. 3

Configuration of the experimental setup.

Fig. 4
Fig. 4

Evolution of the Stokes parameter s1 as a function of wavelength.

Fig. 5
Fig. 5

Evolution of the Stokes parameter s2 as a function of wavelength.

Fig. 6
Fig. 6

Evolution of the Stokes parameter s3 as a function of wavelength.

Fig. 7
Fig. 7

Evolution of the state of polarization of the output light on the Poincaré sphere.

Fig. 8
Fig. 8

Evolution of the Stokes parameter s1 as a function of the amplitude of the modulating signal voltage.

Fig. 9
Fig. 9

Evolution of the Stokes parameter s2 as a function of the amplitude of the modulating signal voltage.

Fig. 10
Fig. 10

Evolution of the Stokes parameter s3 as a function of the amplitude of the modulating signal voltage.

Fig. 11
Fig. 11

Variation of the ellipticity as a function of wavelength.

Fig. 12
Fig. 12

Variation of the DGD value as a function of wavelength.

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

E ¯ i n c ( y , t ) = e ^ x 1 2 A x i exp [ j ( ω t - k i x y y ) ] + e ^ z 1 2 A z i exp [ j ( ω t - k i z y y ) ] + c . c . ,
E ¯ ( y , t ) = e ^ x 1 2 A x ( y , t ) exp [ j ( ω t - k x y y ) ] + e ^ z 1 2 A z ( y , t ) exp [ j ( ω t - k z y y ) ] + c . c . ,
2 E ¯ ( r ¯ , t ) - μ 0 ¯ ¯ ( r ¯ , t ) 2 E ¯ ( r ¯ ,     t ) t 2 0.
¯ ¯ ( r ¯ , t ) = ¯ ¯ o ( r ¯ , t ) + Δ ¯ ¯ ( r ¯ , t ) ,
E ¯ m = e ^ z E 0 cos ( ω m t - k m y ) ,
¯ ¯ r = [ n 0 2 - n 0 4 r 13 E m 0 0 0 n 0 2 - n 0 4 r 13 E m 0 0 0 n e 2 - n e 4 r 33 E m ] ,
A x y + n o c A x t = + j n o 3 ω r 13 E m 2 c A x ,
A z y + n e c A z t = + j n e 3 ω r 33 E m 2 c A z .
A x ( y , t ) = A x i exp [ + j δ m o cos ( ω m t - ϕ m o ) ] ,
A z ( y , t ) = A z i exp [ + j δ m e cos ( ω m t - ϕ m e ) ] ,
δ m o = n o 3 ω r 13 E o y 2 c sin { [ ( ω m n o / 2 c ) - ( k m / 2 ) ] y } [ ( ω m n o / 2 c ) - ( k m / 2 ) ] y ,
δ m e = n e 3 ω r 33 E o y 2 c sin { [ ( ω m n e / 2 c ) - ( k m / 2 ) ] y } [ ( ω m n e / 2 c ) - ( k m / 2 ) ] y ,
ϕ m o = ( k m 2 + ω m n o 2 c ) y ,
ϕ m e = ( k m 2 + ω m n e 2 c ) y ,
k m = ω m c n m ,
E ¯ x ( y , t ) = e ^ x A x i exp { j [ ω t - ω c ( n o - 1 2 n o 3 r 13 E m ) y + δ m o cos ( ω m t - ϕ m o ) ] } ,
E ¯ z ( y , t ) = e ^ z A z i exp { j [ ω t - ω c ( n e - 1 2 n e 3 r 33 E m ) y + δ m e cos ( ω m t - ϕ m e ) ] } ,
E ( o u t ) x ( y , t ) = E x 1 + E x 2 , = A x i exp ( j ω t ) ( exp { - j [ k x y 1 y - δ m o × cos ( ω m t - ϕ m o ) ] } + exp { - j [ k x y 2 y + δ m o × cos ( ω m t - ϕ m o ) - π 2 ] } ) ,
E ( o u t ) z ( y , t ) = E z 1 + E z 2 , = A z i exp ( j ω t ) ( exp { - j [ k z y 1 y - δ m e × cos ( ω m t - ϕ m e ) ] } + exp { - j [ k z y 2 y + δ m e × cos ( ω m t - ϕ m e ) - π 2 ] } ) ,
k x y 1 = ω c ( n o - 1 2 n o 3 r 13 E m ) ,
k x y 2 = ω c ( n o + 1 2 n o 3 r 13 E m ) ,
k z y 1 = ω c ( n e - 1 2 n e 3 r 33 E m ) ,
k z y 2 = ω c ( n e - 1 2 n e 3 r 33 E m ) .
s 1 = E ( o u t ) x 2 - E ( o u t ) z 2 E ( o u t ) x 2 + E ( o u t ) z 2 ,
s 2 = 2 Re [ E ( o u t ) x E ( o u t ) z ] E ( o u t ) x 2 + E ( o u t ) z 2 ,
s 3 = 2 Im [ E ( o u t ) x E ( o u t ) z * ] E ( o u t ) x 2 + E ( o u t ) z 2 ,
d s ¯ out ( ω ) d ω = Ω ¯ ( ω ) × s ¯ o u t ( ω ) ,
Ω ¯ ( ω ) = 1 sin θ d s ¯ o u t ( ω ) d ω 1 s ¯ o u t ( ω ) ,
Δ τ ( ps ) = Ω ¯ ( ω ) = Ω 1 2 + Ω 2 2 + Ω 3 2 ,
Ω 1 = d d ω × [ 1 sin θ A x i 2 ( cos ɛ + 1 ) - A z i 2 ( cos ζ + 1 ) A x i 2 ( cos ɛ + 1 ) + A z i 2 ( cos ζ + 1 ) ] ,
Ω 2 = d d ω × [ 1 sin θ A x i A zi * ( cos κ + cos φ + cos χ + cos ψ ) A x i 2 ( cos ɛ + 1 ) + A z i 2 ( cos ζ + 1 ) ] ,
Ω 3 = d d ω × [ - 1 sin θ A x i A zi * ( sin κ + sin φ + sin χ + sin ψ ) A x i 2 ( cos ɛ + 1 ) + A z i 2 ( cos ζ + 1 ) ] ,
ɛ = ( k x y 1 - k x y 2 ) y - 2 δ m o cos ( ω m t - ϕ m o ) ,
ζ = ( k z y 1 - k z y 2 ) y - 2 δ m e cos ( ω m t - ϕ m e ) ,
κ = ( k x y 1 - k z y 1 ) y - δ m o cos ( ω m t - ϕ m o ) + δ m e cos ( ω m t - ϕ m e ) ,
φ = ( k x y 1 - k x y 2 ) y - δ m o cos ( ω m t - ϕ m o ) - δ m e cos ( ω m t - ϕ m e ) + π 2 ,
χ = ( k x y 2 - k z y 1 ) y + δ m o cos ( ω m t - ϕ m o ) + δ m e cos ( ω m t - ϕ m e ) - π 2 ,
ψ = ( k x y 2 - k z y 2 ) y + δ m o cos ( ω m t - ϕ m o ) + δ m e cos ( ω m t - ϕ m e ) .

Metrics