Abstract

The polarimetric performance nonuniformity of a wire-grid polarizer (WGP) used in imaging polarimetry is investigated with a simple numerical model. The simulation results based on rigorous coupled-wave analysis show that the aperture ratio between the entrance pupil and the WGP significantly affects the uniformity among pixels of a WGP. Even with a WGP smaller than an imaging aperture, the results suggest that the design avoids incurring a Rayleigh anomaly, which causes a substantial increase in polarimetric nonuniformity. Minimizing the variation due to the characteristics of a WGP is important to reduce the likelihood of an error in imaging polarimetry.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Tyan, A. Salvekar, H. Chou, C. Cheng, A. Scherer, F. Xu, P. C. Sun, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
    [CrossRef]
  2. E. Chen, S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673–2675 (1997).
    [CrossRef]
  3. H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421, (1997).
    [CrossRef] [PubMed]
  4. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
    [CrossRef]
  5. S. Arnold, E. Gardner, D. Hansen, R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282–1285.
    [CrossRef]
  6. X.-J. Yu, H.-S. Kwok, “Application of wire-grid polarizers to projection displays,” Appl. Opt. 42, 6335–6341 (2003).
    [CrossRef] [PubMed]
  7. D. Kim, “Polarization characteristics of a wire-grid polarizer in a rotating platform,” Appl. Opt. 44, 1366–1371 (2005).
    [CrossRef] [PubMed]
  8. C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
    [CrossRef]
  9. Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
    [CrossRef]
  10. N. Ageorges, J. R. Walsh, “Acquisition and analysis of adaptive optics imaging polarimetry data,” Astron. Astrophys. Suppl. Ser. 138, 163–176 (1999).
    [CrossRef]
  11. G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Sec. 10.8.
  13. F. A. Sadjadi, C. S. L. Chun, “Passive polarimetric IR target classification,” IEEE Trans. Aerosp. Electron. Syst. 37, 740–751 (2001).
    [CrossRef]
  14. D. Kim, C. Warde, K. Vaccaro, C. Woods, “Imaging multi-spectral polarimetric sensor: single-pixel design and fabrication,” Appl. Opt. 42, 3756–3764 (2003).
    [CrossRef] [PubMed]
  15. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).
  17. W. J. Smith, Modern Optical Engineering (McGraw-Hill, 1990) pp. 135–139.

2005 (1)

2003 (2)

2001 (1)

F. A. Sadjadi, C. S. L. Chun, “Passive polarimetric IR target classification,” IEEE Trans. Aerosp. Electron. Syst. 37, 740–751 (2001).
[CrossRef]

1999 (2)

N. Ageorges, J. R. Walsh, “Acquisition and analysis of adaptive optics imaging polarimetry data,” Astron. Astrophys. Suppl. Ser. 138, 163–176 (1999).
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168–1174 (1999).
[CrossRef]

1997 (5)

C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
[CrossRef]

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

R. Tyan, A. Salvekar, H. Chou, C. Cheng, A. Scherer, F. Xu, P. C. Sun, Y. Fainman, “Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter,” J. Opt. Soc. Am. A 14, 1627–1636 (1997).
[CrossRef]

E. Chen, S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673–2675 (1997).
[CrossRef]

H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band,” Opt. Lett. 22, 419–421, (1997).
[CrossRef] [PubMed]

1986 (1)

Ageorges, N.

N. Ageorges, J. R. Walsh, “Acquisition and analysis of adaptive optics imaging polarimetry data,” Astron. Astrophys. Suppl. Ser. 138, 163–176 (1999).
[CrossRef]

Aitken, D. K.

C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
[CrossRef]

Arnold, S.

S. Arnold, E. Gardner, D. Hansen, R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282–1285.
[CrossRef]

Ax, G. R.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Sec. 10.8.

Chen, E.

E. Chen, S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673–2675 (1997).
[CrossRef]

Cheng, C.

Chou, H.

Chou, S. Y.

E. Chen, S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673–2675 (1997).
[CrossRef]

Chun, C. S. L.

F. A. Sadjadi, C. S. L. Chun, “Passive polarimetric IR target classification,” IEEE Trans. Aerosp. Electron. Syst. 37, 740–751 (2001).
[CrossRef]

Deguzman, P. C.

Doumuki, T.

Fainman, Y.

Fujiyoshi, T.

C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
[CrossRef]

Gardner, E.

S. Arnold, E. Gardner, D. Hansen, R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282–1285.
[CrossRef]

Gaylord, T. K.

Hansen, D.

S. Arnold, E. Gardner, D. Hansen, R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282–1285.
[CrossRef]

Hirata, N.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Howe, J. D.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Ishii, M.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Jones, M. W.

Kim, D.

Kwok, H.-S.

Matsumoto, S.

Meier, J. T.

Miller, M. A.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Moharam, M. G.

Moore, T. J. T.

C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
[CrossRef]

Nagata, T.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Nordin, G. P.

Ogawa, Y.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).

Perkins, R.

S. Arnold, E. Gardner, D. Hansen, R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282–1285.
[CrossRef]

Petty, T. E.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Sadjadi, F. A.

F. A. Sadjadi, C. S. L. Chun, “Passive polarimetric IR target classification,” IEEE Trans. Aerosp. Electron. Syst. 37, 740–751 (2001).
[CrossRef]

Salvekar, A.

Sato, S.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Scherer, A.

Smith, C. H.

C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
[CrossRef]

Smith, M. H.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 1990) pp. 135–139.

Sornsin, E. A.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Sun, P. C.

Tamada, H.

Tyan, R.

Vaccaro, K.

Walsh, J. R.

N. Ageorges, J. R. Walsh, “Acquisition and analysis of adaptive optics imaging polarimetry data,” Astron. Astrophys. Suppl. Ser. 138, 163–176 (1999).
[CrossRef]

Warde, C.

Watanabe, M.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Sec. 10.8.

Woodruff, J. B.

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

Woods, C.

Xu, F.

Yamaguchi, T.

Yao, Y.

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

Yu, X.-J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. Chen, S. Y. Chou, “Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors,” Appl. Phys. Lett. 70, 2673–2675 (1997).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

N. Ageorges, J. R. Walsh, “Acquisition and analysis of adaptive optics imaging polarimetry data,” Astron. Astrophys. Suppl. Ser. 138, 163–176 (1999).
[CrossRef]

Astrophys. J. (1)

Y. Yao, N. Hirata, M. Ishii, T. Nagata, Y. Ogawa, S. Sato, M. Watanabe, “Near-infrared polarimetric study of Monoceros R2 IRS,” Astrophys. J. 490, 281–290 (1997).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

F. A. Sadjadi, C. S. L. Chun, “Passive polarimetric IR target classification,” IEEE Trans. Aerosp. Electron. Syst. 37, 740–751 (2001).
[CrossRef]

J. Opt. Soc. Am. A (3)

Opt. Lett. (1)

Publ. Astron. Soc. Aust. (1)

C. H. Smith, T. J. T. Moore, D. K. Aitken, T. Fujiyoshi, “NIMPOL: an imaging polarimeter for the mid-infrared,” Publ. Astron. Soc. Aust. 14, 179–188 (1997).
[CrossRef]

Other (5)

M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, E. A. Sornsin, “Multispectral infrared Stokes imaging polarimeter,” in Polarization Measurement, Analysis, and Remote Sensing II, D. H. Goldstein, D. B. Chenault, eds., Proc. SPIE3754, 137–143 (1999).
[CrossRef]

S. Arnold, E. Gardner, D. Hansen, R. Perkins, “An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers,” in SID 01 Digest (Society for Information Display, 2001), pp. 1282–1285.
[CrossRef]

E. D. Palik, Handbook of Optical Constants of Solids, (Academic, 1985).

W. J. Smith, Modern Optical Engineering (McGraw-Hill, 1990) pp. 135–139.

M. Born, E. Wolf, Principles of Optics (Pergamon, 1980), Sec. 10.8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Simplified configuration of imaging polarimetry with a WGP. An object (A, B, or C) is imaged by a lens (L) in the image plane (a, b, or c) formed on a WGP. Objects are assumed to be at an infinite distance. (b) θmax and θmin used in Eqs. (2)(4). DL and DWGP are the diameter of the lens and the WGP, respectively. f is the focal length of the imaging lens.

Fig. 2
Fig. 2

(a) NER and (b) NTMT defined in Eq. (1) with DWGP/DL as the grating period varies at λ = 3 μm. The f-number of an imaging lens is assumed to be fixed at 2. A solid line denoting NER = 1 and NTMT = 1 is also shown as a reference.

Fig. 3
Fig. 3

Effect of the grating depth of wire grids on the uniformity.

Fig. 4
Fig. 4

NER and NTMT at DWGP/DL = 1.0 and λ = 3 μm with the grating period. The f-number of an imaging lens is assumed to be fixed at 2. A reference line is also shown.

Fig. 5
Fig. 5

NER and NTMT at Λ = 0.5 and 1.0 μm as the wavelength of an incident beam varies from 3 to 5 μm. DWGP/DL = 1.0, and the f-number of an imaging lens is fixed at 2.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

S 0 = I ( α = 0 ° ,     ɛ = 0 ) + I ( α = 90 ° ,     ɛ = 0 ) , S 1 = I ( α = 0 ° ,     ɛ = 0 ) - I ( α = 90 ° ,     ɛ = 0 ) , S 2 = I ( α = 45 ° ,     ɛ = 0 ) - I ( α = 135 ° ,     ɛ = 0 ) , S 3 = I ( α = 45 ° ,     ɛ = π / 2 ) - I ( α = 135 ° ,     ɛ = π / 2 ) ,
NER = ER ( θ in = θ max ) ER ( θ in = θ min ) ,             NTMT = T ( θ in = θ max ) T ( θ in = θ min ) ,
tan θ max = D L + D WGP 2 f = D L 2 f ( 1 + D WGP D L ) = 1 2 f / # ( 1 + D WGP D L ) ,
tan θ min = D L 2 f = 1 2 f / # .
sin θ in = n s ( 1 - m λ n s Λ ) ,
Λ < λ n s ± sin [ tan - 1 1 2 f / # ( 1 + D WGP D L ) ] ,

Metrics