Abstract

We present two novel schemes for refractometry based on a long-period fiber grating– (LPG-) based Michelson interferometer. These schemes are designed to overcome the measurement dependence of previously demonstrated LPG-based refractometry on the immersion depth. The first utilizes an unshielded LPG and the second, a shielded one. Both schemes were tested over a certain refractive-index range, and the measurement of glucose concentration in water was experimentally demonstrated. In addition, the temperature sensitivity of the two schemes is discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  2. L. S. Thomas, N. A. George, P. Sureshkumar, P. Radhakrishnan, C. P. G. Vallanbhan, V. P. N. Namppori, “Chemical sensing with microbent optical fiber,” Opt. Lett. 26, 1541–1543 (2001).
    [CrossRef]
  3. N. D. Rees, S. W. James, R. Tatam, G. J. Ashwell, “Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays,” Opt. Lett. 27, 686–688 (2002).
    [CrossRef]
  4. A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
    [CrossRef]
  5. K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
    [CrossRef]
  6. G. Laffont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
    [CrossRef]
  7. R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
    [CrossRef]
  8. V. Svirid, S. Khotiaintsev, P. L. Swart, “Linear and steplike characteristics in an optical fiber refractometric transducer with hemispherical detection element,” Opt. Eng. 42, 1383–1389 (2003).
    [CrossRef]
  9. E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.
  10. Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
    [CrossRef]
  11. X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509–510 (1998).
    [CrossRef]
  12. B. H. Lee, J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
    [CrossRef]
  13. P. L. Swart, “A single fibre Michelson interferometric sensor,” in Proceedings of the 16th International Conference on Optical Fiber Sensors, K. Hotate, H. Nagai, eds. (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 602–605.
  14. A. Van Brakel, P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng. Lett. 44, 1576–1580 (2005).
  15. P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
    [CrossRef]
  16. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
    [CrossRef]
  17. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, 2003).
  18. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).
  19. B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
    [CrossRef]
  20. F. Shen, A. Wang, “Frequency-estimation-based signal processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. (to be published).

2005 (1)

A. Van Brakel, P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng. Lett. 44, 1576–1580 (2005).

2004 (1)

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
[CrossRef]

2003 (2)

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

V. Svirid, S. Khotiaintsev, P. L. Swart, “Linear and steplike characteristics in an optical fiber refractometric transducer with hemispherical detection element,” Opt. Eng. 42, 1383–1389 (2003).
[CrossRef]

2002 (1)

2001 (5)

L. S. Thomas, N. A. George, P. Sureshkumar, P. Radhakrishnan, C. P. G. Vallanbhan, V. P. N. Namppori, “Chemical sensing with microbent optical fiber,” Opt. Lett. 26, 1541–1543 (2001).
[CrossRef]

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

G. Laffont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
[CrossRef]

1998 (3)

X. J. Gu, “Wavelength-division multiplexing isolation fiber filter and light source using cascaded long-period fiber gratings,” Opt. Lett. 23, 509–510 (1998).
[CrossRef]

B. H. Lee, J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

1996 (2)

V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

Ahlfeldt, H.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Andreev, A.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Ashwell, G. J.

Asseh, A.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Bhatia, V.

V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

Brynda, E.

R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
[CrossRef]

Chung, Y. J.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

Ctyroky, J.

R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
[CrossRef]

Dianov, E. M.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.

Duan, Y. H.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Ecke, W.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Edwall, G.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

Ferdinand, P.

G. Laffont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

George, N. A.

Gu, X. J.

Han, W. T.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

Han, Y. G.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

Homola, J.

R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
[CrossRef]

Huang, Z. Y.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Huo, W.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

James, S. W.

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

Khotiaintsev, S.

V. Svirid, S. Khotiaintsev, P. L. Swart, “Linear and steplike characteristics in an optical fiber refractometric transducer with hemispherical detection element,” Opt. Eng. 42, 1383–1389 (2003).
[CrossRef]

Kurkov, A. S.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.

Laffont, G.

G. Laffont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Lee, B. H.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

B. H. Lee, J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

May, R. G.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Medvedkov, O. I.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.

Mueller, R.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Namppori, V. P. N.

Nishii, J.

B. H. Lee, J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

Paek, U. C.

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

Peng, W.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Pickrell, G.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Protopopov, V. N.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.

Qi, B.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Radhakrishnan, P.

Rees, N. D.

Sahlgren, B.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Sandgren, S.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Shen, F.

F. Shen, A. Wang, “Frequency-estimation-based signal processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. (to be published).

Shroeder, K.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

Slavik, R.

R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
[CrossRef]

Stubbe, R.

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

Sureshkumar, P.

Svirid, V.

V. Svirid, S. Khotiaintsev, P. L. Swart, “Linear and steplike characteristics in an optical fiber refractometric transducer with hemispherical detection element,” Opt. Eng. 42, 1383–1389 (2003).
[CrossRef]

Swart, P. L.

A. Van Brakel, P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng. Lett. 44, 1576–1580 (2005).

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
[CrossRef]

V. Svirid, S. Khotiaintsev, P. L. Swart, “Linear and steplike characteristics in an optical fiber refractometric transducer with hemispherical detection element,” Opt. Eng. 42, 1383–1389 (2003).
[CrossRef]

P. L. Swart, “A single fibre Michelson interferometric sensor,” in Proceedings of the 16th International Conference on Optical Fiber Sensors, K. Hotate, H. Nagai, eds. (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 602–605.

Tatam, R.

Thomas, L. S.

Vallanbhan, C. P. G.

Van Brakel, A.

A. Van Brakel, P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng. Lett. 44, 1576–1580 (2005).

Vasiliev, S. A.

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

V. Bhatia, A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
[CrossRef] [PubMed]

Wang, A.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

F. Shen, A. Wang, “Frequency-estimation-based signal processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. (to be published).

Willsch, R.

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

Xiao, H.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Xu, J. C.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Yariv, A.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

Yeh, P.

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

Zhang, P.

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Electron. Lett. (1)

B. H. Lee, J. Nishii, “Self-interference of long-period fibre grating and its application as temperature sensor,” Electron. Lett. 34, 2059–2060 (1998).
[CrossRef]

Fiber Integr. Opt. (1)

A. Asseh, S. Sandgren, H. Ahlfeldt, B. Sahlgren, R. Stubbe, G. Edwall, “Fiber optical Bragg grating refractometer,” Fiber Integr. Opt. 17, 51–62 (1998).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, J. E. Sipe, “Long-period fiber gratings as band-rejection filters,” J. Lightwave Technol. 14, 58–64 (1996).
[CrossRef]

Meas. Sci. Technol. (4)

P. L. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576–1580 (2004).
[CrossRef]

Y. G. Han, B. H. Lee, W. T. Han, U. C. Paek, Y. J. Chung, “Fibre optic sensing applications of a pair of long period fibre gratings,” Meas. Sci. Technol. 12, 778–781 (2001).
[CrossRef]

K. Shroeder, W. Ecke, R. Mueller, R. Willsch, A. Andreev, “A fibre Bragg grating refractometer,” Meas. Sci. Technol. 12, 757–764 (2001).
[CrossRef]

G. Laffont, P. Ferdinand, “Tilted short-period fibre-Bragg-grating-induced coupling to cladding modes for accurate refractometry,” Meas. Sci. Technol. 12, 765–770 (2001).
[CrossRef]

Opt. Eng. (2)

V. Svirid, S. Khotiaintsev, P. L. Swart, “Linear and steplike characteristics in an optical fiber refractometric transducer with hemispherical detection element,” Opt. Eng. 42, 1383–1389 (2003).
[CrossRef]

B. Qi, G. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165–3171 (2003).
[CrossRef]

Opt. Eng. Lett. (1)

A. Van Brakel, P. L. Swart, “Temperature-compensated optical fiber Michelson refractometer,” Opt. Eng. Lett. 44, 1576–1580 (2005).

Opt. Lett. (4)

Sens. Actuators B (1)

R. Slavik, J. Homola, J. Čtyroky, E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon resonance,” Sens. Actuators B 74, 106–111 (2001).
[CrossRef]

Other (5)

E. M. Dianov, S. A. Vasiliev, A. S. Kurkov, O. I. Medvedkov, V. N. Protopopov, “In fiber Mach–Zehnder interferometer based on a pair of long period gratings,” in Proceedings of the 22nd European Conference on Optical Communication (Telenor R&D, Oslo, Norway, 1996), pp. 65–68.

P. L. Swart, “A single fibre Michelson interferometric sensor,” in Proceedings of the 16th International Conference on Optical Fiber Sensors, K. Hotate, H. Nagai, eds. (Institute of Electronics, Information, and Communication Engineers, Tokyo, Japan, 2003), pp. 602–605.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, 2003).

A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley-Interscience, 1984).

F. Shen, A. Wang, “Frequency-estimation-based signal processing algorithm for white-light optical fiber Fabry–Perot interferometers,” Appl. Opt. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup and schematics of the proposed sensors using (a) total and (b) partial immersion of the sensitive area. The total immersion scheme requires that l > d + half the total grating length; partial immersion requires that l be greater than the distance from the metal coating to the fiber end.

Fig. 2
Fig. 2

Shifts in interference fringe owing to changes in the surrounding RI. The entire sensor including the LPG was immersed. (a) Interference fringes in a HE18 cladding mode resonance band and its fringe shift, (b) dependence of the wavelength shift of fringe position on the surrounding RI.

Fig. 3
Fig. 3

Measurement of glucose concentration by the total immersion scheme.

Fig. 4
Fig. 4

Reflection spectra of the sensor before and after deposition of a metal coating upon the LPG area.

Fig. 5
Fig. 5

Interference fringe shifts that are due to changes in the surrounding RI. The grating-free region of the sensitive area was used. (a) Interference fringes in a HE18 cladding mode resonance band and its fringe shift, (b) dependence of the wavelength shift of the fringe and (inset) the average spacing of the fringes on the surrounding RI.

Fig. 6
Fig. 6

Measurement of glucose concentration by the partial immersion scheme.

Fig. 7
Fig. 7

Thermally induced interference fringe shift: (a) reflection spectra of the sensor without a metal coating on the LPG and its fringe shift, (b) dependence of the fringe shift on temperature.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ i = ( n co - n cl , i ) Λ ,
Δ ϕ = 4 π λ [ ( n co - n cl , i ) d + Δ n cl , i l ] ,
λ T = ( Δ n eff , i T + α Δ n eff , i ) Λ ,

Metrics