Abstract

The nonlinearity of a mercury cadmium telluride photoconductive detector, an integral part of a modified commercial interferometer used for airborne research, has been analyzed and evaluated against a number of correction schemes. A high-quality blackbody with accurate temperature control has been used as a stable and well-characterized radiation source. The detector nonlinearity was established as a function of scene temperature between 194 and 263 K. Second- and third-order corrections to the measured interferogram have been tested by analyzing the measured signal both within and outside the spectral response region of the detector. A combined correction scheme is proposed that best represents the real nonlinear response of the detector.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. S. Wilson, N. C. Atkinson, J. A. Smith, “The development of an airborne infrared interferometer for metorological sounding studies,” J. Atmos. Oceanic Technol. 16, 1912–1926 (1999).
    [CrossRef]
  2. G. Eppeldauer, L. Novak, “Linear HgCdTe radiometer,” in Imaging Infrared: Scene Simulation, Modeling, and Real Image Tracking,A. J. Huber, M. J. Triplett, J. R. Wolverton, eds., Proc. SPIE1110, 267–273 (1989).
  3. D. B. Chase, “Nonlinear detector response in FT-IR,” Appl. Spectrosc. 38, 491–494 (1984).
    [CrossRef]
  4. K. Rahmelow, “Electronic influences on an infrared detector signal: nonlinearity and amplification,” Appl. Opt. 36, 2123–2132 (1997).
    [CrossRef] [PubMed]
  5. P. Jeseck, C. Camy-Peyret, S. Payan, T. Hawat, “Detector correction scheme for the LPMA balloonborne Fourier transform spectrometer,” Appl. Opt. 37, 6544–6549 (1998).
    [CrossRef]
  6. R. L. Richardson, J. R. Husheng Yang, P. R. Griffiths, “Effect of detector nonlinearity on spectra measured on three commercial FT-IR spectrometers,” Appl. Spectrosc. 52, 572–578 (1998).
    [CrossRef]
  7. M. C. Abrams, G. C. Toon, R. A. Schindler, “Practical example of the correction of Fourier-transform spectra for detector nonlinearity,” Appl. Opt. 33, 6307–6314 (1994).
    [CrossRef] [PubMed]
  8. L. Fiedler, “Measurements of sea surface reflectivity in the IR with the ‘Ocean Atmosphere Sounding Interferometer System’ (OASIS),” Ph.D. dissertation (Max-Planck-Institute for Meteorology, 2000) [available from Max-Planck-Institute for Meteorology].
  9. L. Fiedler, “Hohlraumstrahler,” German patent100 09880.0 (1March2000).
  10. A. Keens, A. Simon, “Correction of nonlinearity in detectors in Fourier Transfrom Spectroscopy,” U.S. patent4,927,269 (22May1990).
  11. M. S. Alam, J. Perdina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3264–3271 (2000).
    [CrossRef]
  12. Z. M. Zhang, C. J. Zhu, L. M. Hanssen, “Absolute detector calibration applied to nonlinearity error correction in FT-IR measurements,” Appl. Spectrosc. 51, 576–579 (1997).
    [CrossRef]
  13. H. E. Revercomb, H. Buijs, H. B. Howell, D. D. LaPorte, W. L. Smith, L. A. Sromovsky, “Radiometric calibration of IR Fourier transform spectrometers: solution to a problem with the High-Resolution Interferometer Sounder,” Appl. Opt. 27, 3210–3218 (1988).
    [CrossRef] [PubMed]
  14. C. Weddigen, C. E. Blom, M. Höpfner, “Phase corrections for the emission sounder MIPAS-FT,” Appl. Opt. 32, 4586–4589 (1993).
    [CrossRef] [PubMed]
  15. C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
    [CrossRef]
  16. Schoenwiese Praktische Statistik, ed.2 (Gebrueder BornTraeger, Berlin-Stuttgart, 1992).

2000 (1)

M. S. Alam, J. Perdina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3264–3271 (2000).
[CrossRef]

1999 (2)

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

S. H. S. Wilson, N. C. Atkinson, J. A. Smith, “The development of an airborne infrared interferometer for metorological sounding studies,” J. Atmos. Oceanic Technol. 16, 1912–1926 (1999).
[CrossRef]

1998 (2)

1997 (2)

1994 (1)

1993 (1)

1988 (1)

1984 (1)

Abrams, M. C.

Alam, M. S.

M. S. Alam, J. Perdina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3264–3271 (2000).
[CrossRef]

Atkinson, N. C.

S. H. S. Wilson, N. C. Atkinson, J. A. Smith, “The development of an airborne infrared interferometer for metorological sounding studies,” J. Atmos. Oceanic Technol. 16, 1912–1926 (1999).
[CrossRef]

Baldwin, D.

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

Blom, C. E.

Buijs, H.

Camy-Peyret, C.

Chase, D. B.

Donlon, C. J.

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

Eppeldauer, G.

G. Eppeldauer, L. Novak, “Linear HgCdTe radiometer,” in Imaging Infrared: Scene Simulation, Modeling, and Real Image Tracking,A. J. Huber, M. J. Triplett, J. R. Wolverton, eds., Proc. SPIE1110, 267–273 (1989).

Fiedler, L.

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

L. Fiedler, “Hohlraumstrahler,” German patent100 09880.0 (1March2000).

L. Fiedler, “Measurements of sea surface reflectivity in the IR with the ‘Ocean Atmosphere Sounding Interferometer System’ (OASIS),” Ph.D. dissertation (Max-Planck-Institute for Meteorology, 2000) [available from Max-Planck-Institute for Meteorology].

Fisher, G.

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

Griffiths, P. R.

Hanssen, L. M.

Hawat, T.

Höpfner, M.

Howell, H. B.

Husheng Yang, J. R.

Jeseck, P.

Keens, A.

A. Keens, A. Simon, “Correction of nonlinearity in detectors in Fourier Transfrom Spectroscopy,” U.S. patent4,927,269 (22May1990).

LaPorte, D. D.

Nightingale, T.

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

Novak, L.

G. Eppeldauer, L. Novak, “Linear HgCdTe radiometer,” in Imaging Infrared: Scene Simulation, Modeling, and Real Image Tracking,A. J. Huber, M. J. Triplett, J. R. Wolverton, eds., Proc. SPIE1110, 267–273 (1989).

Payan, S.

Perdina, J.

M. S. Alam, J. Perdina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3264–3271 (2000).
[CrossRef]

Rahmelow, K.

Revercomb, H. E.

Richardson, R. L.

Robinson, I. S.

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

Schindler, R. A.

Simon, A.

A. Keens, A. Simon, “Correction of nonlinearity in detectors in Fourier Transfrom Spectroscopy,” U.S. patent4,927,269 (22May1990).

Smith, J. A.

S. H. S. Wilson, N. C. Atkinson, J. A. Smith, “The development of an airborne infrared interferometer for metorological sounding studies,” J. Atmos. Oceanic Technol. 16, 1912–1926 (1999).
[CrossRef]

Smith, W. L.

Sromovsky, L. A.

Toon, G. C.

Weddigen, C.

Wilson, S. H. S.

S. H. S. Wilson, N. C. Atkinson, J. A. Smith, “The development of an airborne infrared interferometer for metorological sounding studies,” J. Atmos. Oceanic Technol. 16, 1912–1926 (1999).
[CrossRef]

Zhang, Z. M.

Zhu, C. J.

Appl. Opt. (5)

Appl. Spectrosc. (3)

J. Atmos. Oceanic Technol. (2)

S. H. S. Wilson, N. C. Atkinson, J. A. Smith, “The development of an airborne infrared interferometer for metorological sounding studies,” J. Atmos. Oceanic Technol. 16, 1912–1926 (1999).
[CrossRef]

C. J. Donlon, T. Nightingale, L. Fiedler, G. Fisher, D. Baldwin, I. S. Robinson, “The calibration and intercalibration of sea-going infrared radiometer systems using a low cost blackbody cavity,” J. Atmos. Oceanic Technol. 16, 1183–1197 (1999).
[CrossRef]

Opt. Eng. (1)

M. S. Alam, J. Perdina, “Identification and estimation of nonlinearity in constant-voltage-biased infrared sensor detected signals,” Opt. Eng. 39, 3264–3271 (2000).
[CrossRef]

Other (5)

Schoenwiese Praktische Statistik, ed.2 (Gebrueder BornTraeger, Berlin-Stuttgart, 1992).

G. Eppeldauer, L. Novak, “Linear HgCdTe radiometer,” in Imaging Infrared: Scene Simulation, Modeling, and Real Image Tracking,A. J. Huber, M. J. Triplett, J. R. Wolverton, eds., Proc. SPIE1110, 267–273 (1989).

L. Fiedler, “Measurements of sea surface reflectivity in the IR with the ‘Ocean Atmosphere Sounding Interferometer System’ (OASIS),” Ph.D. dissertation (Max-Planck-Institute for Meteorology, 2000) [available from Max-Planck-Institute for Meteorology].

L. Fiedler, “Hohlraumstrahler,” German patent100 09880.0 (1March2000).

A. Keens, A. Simon, “Correction of nonlinearity in detectors in Fourier Transfrom Spectroscopy,” U.S. patent4,927,269 (22May1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of detector nonlinearity, showing its effect on the measured interferogram and the dependence of nonlinearity on the dc-part.

Fig. 2
Fig. 2

Modeled dependence of higher-order nonlinearities on the detector spectral response function. A simple boxcar detector spectral response and associated nonlinear components are shown by the dotted curves, with a realistic ARIES MCT detector response and higher-order terms shown as solid curves. The gray shading indicates the spectral range of the MCT detector.

Fig. 3
Fig. 3

Results from the alignment procedure of the LTBBU. The voltage values at ZPD are shown as contour lines for different LTBBU positions.

Fig. 4
Fig. 4

Average temperature differences between the LTBBU and the spectral averages of the MCT and InSb detector spectra after a linear calibration has been applied. Error bars indicate the SD of the average temperature difference.

Fig. 5
Fig. 5

Distribution of temperature differences between LTBBU and MCT (light shading) and InSb (dark shading) detector spectral averages after linear calibration.

Fig. 6
Fig. 6

Nonlinearity coefficients presented as a function of LTBBU temperature. SDs of the data are displayed as error bars. Derived coefficients α and β are shown (a) from application of the in-band method and (b) from use of the out-band method. (c) Coefficients γ are shown derived with in- and out-band methods and also the combined second- and third-order technique.

Fig. 7
Fig. 7

Histograms of nonlinearity coefficients derived with in- and out-band techniques for different nonlinearity correction formulations. The 16 different classes used have been calculated in accordance to the number of measurements (1630).

Fig. 8
Fig. 8

Histograms of temperature differences between the LTBBU and the MCT window brightness temperature. As described in the figure legends, coefficients derived with in- and out-band methods were used during application of the various correction schemes.

Fig. 9
Fig. 9

Spectra of brightness temperature calibrated linearly (black curve) and results from the combined second- and third-order correction (gray curve). The dashed black lines indicate the average LTBBU temperatures. Results for an average LTBBU temperature of (a) 223.35 K and (b) 194.48 K.

Tables (4)

Tables Icon

Table 1 Combination of Different Nonlinearity Correction Equations and the Techniques for Determination of the Coefficients Investigated

Tables Icon

Table 2 Average LTBBU Temperature with SD and the Number of Individual LTBBU Observations

Tables Icon

Table 3 Summary of Nonlinearity Coefficients Derived from the Measurements for the Different Orders of Nonlinearity Equations and Different Techniques

Tables Icon

Table 4 Mean Temperature Differences between the LTBBU and the Average MCT Spectra in the Atmospheric Window Region for the Different Types of Nonlinearity Correction and, Finally, the Linear Calibration Applied

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I t = I m + β I m 2 + γ I m 3 + δ I m 4 + higher orders ,
I t = I t dc + I t ac ,             I m = I m dc + I m ac .
I t = I m 1 - α I m = I m + α I m 2 + α 2 I m 3 + α 3 I m 4 + .

Metrics