Abstract

The nonlinearity of a mercury cadmium telluride photoconductive detector, an integral part of a modified commercial interferometer used for airborne research, has been analyzed and evaluated against a number of correction schemes. A high-quality blackbody with accurate temperature control has been used as a stable and well-characterized radiation source. The detector nonlinearity was established as a function of scene temperature between 194 and 263 K. Second- and third-order corrections to the measured interferogram have been tested by analyzing the measured signal both within and outside the spectral response region of the detector. A combined correction scheme is proposed that best represents the real nonlinear response of the detector.

© 2005 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription