Abstract

A remote atmospheric breakdown is a very rich source of UV and broadband visible light that could provide an early warning of the presence of chemical–biological warfare agents at extended standoff distances. A negatively chirped laser pulse propagating in air compresses in time and focuses transversely, which results in a rapid laser intensity increase and ionization near the focal region that can be located kilometers away from the laser system. Proof-of-principle laboratory experiments are performed on the generation of remote atmospheric breakdown and the spectroscopic detection of mock biological warfare agents. We have generated third harmonics at 267 nm and UV broadband radiation in air from the compression and focusing of femtosecond laser pulses. Fluorescence emission from albumin aerosols as they were illuminated by the femtosecond laser pulse has been observed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–424 (2000).
    [CrossRef]
  2. L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).
  3. W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1999).
    [CrossRef]
  4. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. S. Prade, A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [CrossRef]
  5. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20, 73–75 (1995).
    [CrossRef] [PubMed]
  6. I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
    [CrossRef]
  7. P. Sprangle, J. R. Penano, B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418-01–046418-21 (2002).
    [CrossRef]
  8. K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
    [CrossRef]
  9. A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  10. A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, P. Sprangle, “Direct characterization of self-guided femtosecond laser filaments in air,” Appl. Opt. 44, 1474–1479 (2005).
    [CrossRef] [PubMed]
  11. I. Alexeev, A. C. Ting, D. F. Gordon, E. Briscoe, B. Hafizi, P. Sprangle, “Characterization of the third-harmonic radiation generated by intense laser self-formed filaments propagating in air,” Opt. Lett. 30, 1503–1505 (2005).
    [CrossRef] [PubMed]
  12. G. W. Faris, R. A. Copeland, K. Mortelmans, B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt. 36, 958–967 (1997).
    [CrossRef] [PubMed]

2005 (2)

2004 (1)

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

2002 (1)

P. Sprangle, J. R. Penano, B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418-01–046418-21 (2002).
[CrossRef]

2000 (2)

A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–424 (2000).
[CrossRef]

1997 (3)

1995 (1)

1993 (1)

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Alexeev, I.

I. Alexeev, A. C. Ting, D. F. Gordon, E. Briscoe, B. Hafizi, P. Sprangle, “Characterization of the third-harmonic radiation generated by intense laser self-formed filaments propagating in air,” Opt. Lett. 30, 1503–1505 (2005).
[CrossRef] [PubMed]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Birch, K. P.

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Braun, A.

Briscoe, E.

Bronk, B. V.

Copeland, R. A.

Downs, M. J.

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Du, D.

Faris, G. W.

Franco, M. A.

Gordon, D. F.

Grillon, G.

Hafizi, B.

Hubbard, R. F.

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1999).
[CrossRef]

Korn, G.

Liu, X.

Mortelmans, K.

Mourou, G.

Mysyrowicz, A.

Nibbering, E. T. J.

Niedermeier, S.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Nikolov, S.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Penano, J. R.

A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, P. Sprangle, “Direct characterization of self-guided femtosecond laser filaments in air,” Appl. Opt. 44, 1474–1479 (2005).
[CrossRef] [PubMed]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

P. Sprangle, J. R. Penano, B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418-01–046418-21 (2002).
[CrossRef]

Phuoc, T. X.

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–424 (2000).
[CrossRef]

Prade, B. S.

Rairoux, P.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Ronnenberger, F.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Sauerbrey, R.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Schillinger, H.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Sprangle, P.

I. Alexeev, A. C. Ting, D. F. Gordon, E. Briscoe, B. Hafizi, P. Sprangle, “Characterization of the third-harmonic radiation generated by intense laser self-formed filaments propagating in air,” Opt. Lett. 30, 1503–1505 (2005).
[CrossRef] [PubMed]

A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, P. Sprangle, “Direct characterization of self-guided femtosecond laser filaments in air,” Appl. Opt. 44, 1474–1479 (2005).
[CrossRef] [PubMed]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

P. Sprangle, J. R. Penano, B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418-01–046418-21 (2002).
[CrossRef]

Squier, J.

Stein, B.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Ting, A.

A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, P. Sprangle, “Direct characterization of self-guided femtosecond laser filaments in air,” Appl. Opt. 44, 1474–1479 (2005).
[CrossRef] [PubMed]

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

Ting, A. C.

Wedekind, C.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Weiner, A. W.

A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Werner, C.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Wille, H.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Wöste, L.

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I. Alexeev, A. Ting, D. F. Gordon, E. Briscoe, J. R. Penano, R. F. Hubbard, P. Sprangle, “Longitudinal compression of short laser pulses in air,” Appl. Phys. Lett. 84, 4080–4082 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Optoelektron. (1)

L. Wöste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, C. Werner, S. Niedermeier, F. Ronnenberger, H. Schillinger, R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).

Metrologia (1)

K. P. Birch, M. J. Downs, “An updated Edlén equation for the refractive index of air,” Metrologia 30, 155–162 (1993).
[CrossRef]

Opt. Commun. (1)

T. X. Phuoc, “Laser spark ignition: experimental determination of laser-induced breakdown thresholds of combustion gases,” Opt. Commun. 175, 419–424 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. E (1)

P. Sprangle, J. R. Penano, B. Hafizi, “Propagation of intense short laser pulses in the atmosphere,” Phys. Rev. E 66, 046418-01–046418-21 (2002).
[CrossRef]

Rev. Sci. Instrum. (1)

A. W. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Other (1)

W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Spectrum of the UV radiation generation by self-focused femtosecond laser filaments in air. The curve includes UV radiation from the filaments and the surrounding regions.

Fig. 2
Fig. 2

Third-harmonic spectra from self-focused femtosecond laser filaments in air for different input laser pulse energies: dotted curve, 20 mJ; dashed curve, 23 mJ; solid curve, 27 mJ. Note the broadening of the spectra.

Fig. 3
Fig. 3

Schematic of the albumin aerosol mixing chamber and the laser interaction chamber.

Fig. 4
Fig. 4

Scattered 800 nm laser light by albumin aerosols viewed through the window of the interaction chamber.

Fig. 5
Fig. 5

Experimental setup for measurement of scattered radiation from albumin aerosols illuminated by self-focused femtosecond laser filaments.

Fig. 6
Fig. 6

Typical fluorescent spectrum obtained by illuminating the albumin aerosols with 266 nm pulsed laser light.

Fig. 7
Fig. 7

PMT signal of scattered, solid curve, 266 nm laser light and, dashed curve, 340 nm fluorescent light.

Fig. 8
Fig. 8

Normalized PMT signal of, solid curve, scattered silica aerosol light at 340 nm; dashed curve, scattered and fluorescent light at the same wavelength when the silica powder is replaced by albumin.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P = π 2 ( 1.22 f λ D ) 2 I p .
P c = λ 2 2 π n 0 n 2 ,
T ( z ) = T 0 [ ( 1 + β 0 z Z T ) 2 + ( z Z T ) 2 ] 1 / 2 ,
z s = - β 0 1 + β 0 2 Z T .

Metrics