Abstract

A volumetric display technique that uses fluorescence excited by a single infrared beam is proposed. A convergent laser beam is used to activate ions locally around the focal point. Three-dimensional scanning by the focal point is achieved by moving an inclined image plane in the direction perpendicular to an optical axis. Preliminary experimental results of three-dimensional image generation in an Er3+-doped fluoride glass excited by a laser beam of 810 nm wavelength are presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Blundell, A. J. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley-Interscience, 2000).
  2. E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
    [CrossRef]
  3. T. Honda, T. Doumuki, A. Akella, L. Galambos, L. Hesselink, “One-color one-beam pumping of Er3+-doped ZBLAN glasses for a three-dimensional two-step excitation display,” Opt. Lett. 23, 1108–1110 (1998).
    [CrossRef]
  4. J. Lucas, “Fluoride glasses,” Curr. Opin. Solid State Mater. Sci. 2, 405–411 (1997).
    [CrossRef]
  5. D. Miyazaki, T. Kawanishi, Y. Nishimura, K. Matsushita, “Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner,” in Algorithms and Systems for Optical Information Processing V,B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 26–33 (2001).
    [CrossRef]
  6. D. Miyazaki, K. Matsushita, “Volume-scanning three-dimensional display that uses an inclined image plane,” Appl. Opt. 40, 3354–3358 (2001).
    [CrossRef]
  7. D. Miyazaki, T. Eto, Y. Nishimura, K. Matsushita, “Three-dimensional volumetric display by inclined-plane scanning,” in Stereoscopic Displays and Virtual Reality Systems X,A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE5006, 153–160 (2003).
    [CrossRef]

2001 (1)

1998 (1)

1997 (1)

J. Lucas, “Fluoride glasses,” Curr. Opin. Solid State Mater. Sci. 2, 405–411 (1997).
[CrossRef]

1996 (1)

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Akella, A.

Blundell, B. G.

B. G. Blundell, A. J. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley-Interscience, 2000).

Doumuki, T.

Downing, E.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Eto, T.

D. Miyazaki, T. Eto, Y. Nishimura, K. Matsushita, “Three-dimensional volumetric display by inclined-plane scanning,” in Stereoscopic Displays and Virtual Reality Systems X,A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE5006, 153–160 (2003).
[CrossRef]

Galambos, L.

Hesselink, L.

Honda, T.

Kawanishi, T.

D. Miyazaki, T. Kawanishi, Y. Nishimura, K. Matsushita, “Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner,” in Algorithms and Systems for Optical Information Processing V,B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 26–33 (2001).
[CrossRef]

Lucas, J.

J. Lucas, “Fluoride glasses,” Curr. Opin. Solid State Mater. Sci. 2, 405–411 (1997).
[CrossRef]

Macfarlane, R.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Matsushita, K.

D. Miyazaki, K. Matsushita, “Volume-scanning three-dimensional display that uses an inclined image plane,” Appl. Opt. 40, 3354–3358 (2001).
[CrossRef]

D. Miyazaki, T. Kawanishi, Y. Nishimura, K. Matsushita, “Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner,” in Algorithms and Systems for Optical Information Processing V,B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 26–33 (2001).
[CrossRef]

D. Miyazaki, T. Eto, Y. Nishimura, K. Matsushita, “Three-dimensional volumetric display by inclined-plane scanning,” in Stereoscopic Displays and Virtual Reality Systems X,A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE5006, 153–160 (2003).
[CrossRef]

Miyazaki, D.

D. Miyazaki, K. Matsushita, “Volume-scanning three-dimensional display that uses an inclined image plane,” Appl. Opt. 40, 3354–3358 (2001).
[CrossRef]

D. Miyazaki, T. Eto, Y. Nishimura, K. Matsushita, “Three-dimensional volumetric display by inclined-plane scanning,” in Stereoscopic Displays and Virtual Reality Systems X,A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE5006, 153–160 (2003).
[CrossRef]

D. Miyazaki, T. Kawanishi, Y. Nishimura, K. Matsushita, “Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner,” in Algorithms and Systems for Optical Information Processing V,B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 26–33 (2001).
[CrossRef]

Nishimura, Y.

D. Miyazaki, T. Kawanishi, Y. Nishimura, K. Matsushita, “Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner,” in Algorithms and Systems for Optical Information Processing V,B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 26–33 (2001).
[CrossRef]

D. Miyazaki, T. Eto, Y. Nishimura, K. Matsushita, “Three-dimensional volumetric display by inclined-plane scanning,” in Stereoscopic Displays and Virtual Reality Systems X,A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE5006, 153–160 (2003).
[CrossRef]

Ralston, J.

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Schwarz, A. J.

B. G. Blundell, A. J. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley-Interscience, 2000).

Appl. Opt. (1)

Curr. Opin. Solid State Mater. Sci. (1)

J. Lucas, “Fluoride glasses,” Curr. Opin. Solid State Mater. Sci. 2, 405–411 (1997).
[CrossRef]

Opt. Lett. (1)

Science (1)

E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, “A three-color, solid-state, three-dimensional display,” Science 273, 1185–1189 (1996).
[CrossRef]

Other (3)

B. G. Blundell, A. J. Schwarz, Volumetric Three-Dimensional Display Systems (Wiley-Interscience, 2000).

D. Miyazaki, T. Kawanishi, Y. Nishimura, K. Matsushita, “Volume scanning three-dimensional display with an inclined two-dimensional display and a mirror scanner,” in Algorithms and Systems for Optical Information Processing V,B. Javidi, D. Psaltis, eds., Proc. SPIE4471, 26–33 (2001).
[CrossRef]

D. Miyazaki, T. Eto, Y. Nishimura, K. Matsushita, “Three-dimensional volumetric display by inclined-plane scanning,” in Stereoscopic Displays and Virtual Reality Systems X,A. J. Woods, M. T. Bolas, J. O. Merritt, S. A. Benton, eds., Proc. SPIE5006, 153–160 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Two-beam fluorescent volumetric display: (a) fluorescence at an intersection point of two laser beams and (b) energy level diagram for two-step excitation.

Fig. 2
Fig. 2

One-beam fluorescent volumetric display.

Fig. 3
Fig. 3

Mechanism of upconversion from IR to green light in Er3+-doped ZBLAN glass. The solid line arrows represent excitation by light and radiative transitions; the broken lines represent nonradiative relaxation.

Fig. 4
Fig. 4

Plot of fluorescence intensity Er3+-doped ZBLAN glass versus excitation intensity of an 810 nm wavelength IR laser.

Fig. 5
Fig. 5

Picture of fluorescence in Er3+-doped ZBLAN glass excited by a converging IR laser beam.

Fig. 6
Fig. 6

Volumetric display system that uses 3-D scanning by an inclined image plane.

Fig. 7
Fig. 7

Experimental system of fluorescent volumetric display excited by a single IR beam.

Fig. 8
Fig. 8

Three-dimensional image generated in the experimental system: (a) side view, (b) top view, (c) front view of a circle inclined to the optical axis at 45 deg.

Fig. 9
Fig. 9

Experimental results of a fluorescent volumetric display: (a) two circles and (b) a Lissajous-like 3-D pattern.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x = m f 1 tan α cos θ + f 3 tan γ ,
y = m f 1 tan β ,
z = m 2 f 1 tan α sin θ ,

Metrics