Abstract

A novel signal-processing algorithm based on frequency estimation of the spectrogram of single-mode optical fiber Fabry–Perot interferometric sensors under white-light illumination is described. The frequency-estimation approach is based on linear regression of the instantaneous phase of an analytical signal, which can be obtained by preprocessing the original spectrogram with a bandpass filter. This method can be used for a relatively large cavity length without the need for spectrogram normalization to the spectrum of the light source and can be extended directly to a multiplexed sensor system. Experimental results show that the method can yield both absolute measurement with high resolution and a large dynamic range. Performance analysis shows that the method is tolerant of background noise and variations of the source spectrum.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, 2000), Vol. 4, 193–238.
    [CrossRef]
  2. S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
    [CrossRef] [PubMed]
  3. B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
    [CrossRef]
  4. R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
    [CrossRef]
  5. J. Tapia-Mercado, A. V. Khomenko, A. Garcia-Weidner, “Precision and sensitivity optimization for white-light inteferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001).
    [CrossRef]
  6. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
    [CrossRef]
  7. W. V. Sorin, D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
    [CrossRef]
  8. Y.-L. Lo, “Study of cross-talk of parallel Fabry Perot sensors in path-matching differential interferometry,” Opt. Lasers Eng. 31, 401–410 (1999).
    [CrossRef]
  9. C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron Lett. 24, 193–194 (1988).
    [CrossRef]
  10. C. E. Lee, H. F. Taylor, “In-line Fiber Fabry Perot interferometer with high reflectance internal mirrors,” J. Light-wave Technol. 10, 1376–1379 (1992).
    [CrossRef]
  11. K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
    [CrossRef]
  12. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
    [CrossRef]
  13. J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
    [CrossRef]
  14. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 29, 1736–1378 (2004).
    [CrossRef] [PubMed]
  15. S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Trans. Inf. Theory IT-31, 832–835 (1985).
    [CrossRef]
  16. S. M. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. Acoust. Speech Signal Process. 37, 1987–1990 (1989).
    [CrossRef]
  17. D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory IT-20, 591–598 (1974).
    [CrossRef]

2004 (1)

2003 (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

2001 (2)

1999 (1)

Y.-L. Lo, “Study of cross-talk of parallel Fabry Perot sensors in path-matching differential interferometry,” Opt. Lasers Eng. 31, 401–410 (1999).
[CrossRef]

1998 (1)

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

1995 (2)

W. V. Sorin, D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

1992 (2)

C. E. Lee, H. F. Taylor, “In-line Fiber Fabry Perot interferometer with high reflectance internal mirrors,” J. Light-wave Technol. 10, 1376–1379 (1992).
[CrossRef]

S. Chen, A. W. Palmer, K. T. V. Grattan, B. T. Meggitt, “Digital signal-processing techniques for electronically scanned optical-fiber white-light interferometry,” Appl. Opt. 31, 6003–6010 (1992).
[CrossRef] [PubMed]

1989 (1)

S. M. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. Acoust. Speech Signal Process. 37, 1987–1990 (1989).
[CrossRef]

1988 (1)

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron Lett. 24, 193–194 (1988).
[CrossRef]

1985 (2)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Trans. Inf. Theory IT-31, 832–835 (1985).
[CrossRef]

1974 (1)

D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory IT-20, 591–598 (1974).
[CrossRef]

Arzate, N.

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

Baney, D. M.

W. V. Sorin, D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

Berkoff, T. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Boorstyn, R. R.

D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory IT-20, 591–598 (1974).
[CrossRef]

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Chen, S.

Claus, R. O.

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
[CrossRef]

Cortés, R.

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

Duan, Y.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Friebele, E. J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Garcia-Weidner, A.

Grattan, K. T. V.

Gunther, M. F.

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
[CrossRef]

Han, M.

Huang, Z.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Huo, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Jones, R. T.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Kay, S. M.

S. M. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. Acoust. Speech Signal Process. 37, 1987–1990 (1989).
[CrossRef]

Kersey, A. D.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Khomenko, A. V.

J. Tapia-Mercado, A. V. Khomenko, A. Garcia-Weidner, “Precision and sensitivity optimization for white-light inteferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001).
[CrossRef]

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Lee, C. E.

C. E. Lee, H. F. Taylor, “In-line Fiber Fabry Perot interferometer with high reflectance internal mirrors,” J. Light-wave Technol. 10, 1376–1379 (1992).
[CrossRef]

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron Lett. 24, 193–194 (1988).
[CrossRef]

Lo, Y.-L.

Y.-L. Lo, “Study of cross-talk of parallel Fabry Perot sensors in path-matching differential interferometry,” Opt. Lasers Eng. 31, 401–410 (1999).
[CrossRef]

May, R. G.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Meggit, B. T.

B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, 2000), Vol. 4, 193–238.
[CrossRef]

Meggitt, B. T.

Murphy, K. A.

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
[CrossRef]

Palmer, A. W.

Peng, W.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Pickrell, G. R.

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 29, 1736–1378 (2004).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Putnam, M. A.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Qi, B.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Rife, D. C.

D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory IT-20, 591–598 (1974).
[CrossRef]

Shaw, H. J.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Shen, F.

Singh, H.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Sirkis, J.

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

Sorin, W. V.

W. V. Sorin, D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

Starodumov, A. N.

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

Tapia-Mercado, J.

Taylor, H. F.

C. E. Lee, H. F. Taylor, “In-line Fiber Fabry Perot interferometer with high reflectance internal mirrors,” J. Light-wave Technol. 10, 1376–1379 (1992).
[CrossRef]

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron Lett. 24, 193–194 (1988).
[CrossRef]

Tretter, S. A.

S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Trans. Inf. Theory IT-31, 832–835 (1985).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Vengsarkar, A. M.

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
[CrossRef]

Wang, A.

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry–Perot interferometric sensors,” Opt. Lett. 29, 1736–1378 (2004).
[CrossRef] [PubMed]

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
[CrossRef]

Wang, J.

Wang, Z.

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Xiao, H.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

Xu, J.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Zenteno, L. A.

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

Zhang, P.

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Zhang, Y.

Zhao, W.

Appl. Opt. (1)

Electron Lett. (1)

C. E. Lee, H. F. Taylor, “Interferometric optical fiber sensors using internal mirrors,” Electron Lett. 24, 193–194 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. V. Sorin, D. M. Baney, “Multiplexed sensing using optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 7, 917–919 (1995).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

S. M. Kay, “A fast and accurate single frequency estimator,” IEEE Trans. Acoust. Speech Signal Process. 37, 1987–1990 (1989).
[CrossRef]

IEEE Trans. Inf. Theory (2)

D. C. Rife, R. R. Boorstyn, “Single-tone parameter estimation from discrete-time observations,” IEEE Trans. Inf. Theory IT-20, 591–598 (1974).
[CrossRef]

S. A. Tretter, “Estimating the frequency of a noisy sinusoid by linear regression,” IEEE Trans. Inf. Theory IT-31, 832–835 (1985).
[CrossRef]

J. Light-wave Technol. (1)

C. E. Lee, H. F. Taylor, “In-line Fiber Fabry Perot interferometer with high reflectance internal mirrors,” J. Light-wave Technol. 10, 1376–1379 (1992).
[CrossRef]

J. Lightwave Technol. (4)

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, R. G. May, “Self-calibrated interferometric-intensity-based optical fiber sensors,” J. Lightwave Technol. 19, 1495–1501 (2001).
[CrossRef]

J. Sirkis, T. A. Berkoff, R. T. Jones, H. Singh, A. D. Kersey, E. J. Friebele, M. A. Putnam, “In-line fiber etalon (ILFE) fiber-optic strain sensors,” J. Lightwave Technol. 13, 1256–1268 (1995).
[CrossRef]

J. Tapia-Mercado, A. V. Khomenko, A. Garcia-Weidner, “Precision and sensitivity optimization for white-light inteferometric fiber-optic sensors,” J. Lightwave Technol. 19, 70–74 (2001).
[CrossRef]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[CrossRef]

Opt. Commun. (1)

R. Cortés, A. V. Khomenko, A. N. Starodumov, N. Arzate, L. A. Zenteno, “Interferometric fiber-optic temperature sensor with spiral polarization couplers,” Opt. Commun. 15, 268–272 (1998).
[CrossRef]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. Xu, P. Zhang, Y. Duan, W. Peng, Z. Huang, W. Huo, H. Xiao, R. G. May, A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42, 3165 (2003).
[CrossRef]

Opt. Lasers Eng. (1)

Y.-L. Lo, “Study of cross-talk of parallel Fabry Perot sensors in path-matching differential interferometry,” Opt. Lasers Eng. 31, 401–410 (1999).
[CrossRef]

Opt. Lett. (1)

Other (2)

K. A. Murphy, M. F. Gunther, A. Wang, R. O. Claus, A. M. Vengsarkar, “Extrinsic Fabry Perot optical fiber sensor,” in Eighth Optical Fiber Sensors Conference (Institute of Electrical and Electronics Engineers, 1992), pp. 193–196.
[CrossRef]

B. T. Meggit, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Meggitt, eds. (Kluwer Academic, 2000), Vol. 4, 193–238.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

FP interferometric sensors: (a) IFPI sensor, (b) EFPI sensor.

Fig. 2
Fig. 2

(a) Spectrogram and (b) result of fast Fourier transformation of an EFPI sensor.

Fig. 3
Fig. 3

Methods for obtaining analytical signals: (a) single-band filter, (b) frequency shift.

Fig. 4
Fig. 4

Schematic of the experimental setup.

Fig. 5
Fig. 5

(a) Spectrogram and (b) result of fast Fourier transformation of multiplexed FP sensors.

Fig. 6
Fig. 6

Temperature responses of the multiplexed FP sensors: (a) OPDs during the temperature cycle, (b) OPDs versus temperature.

Fig. 7
Fig. 7

Simulation results of frequency estimations for unknown phases.

Fig. 8
Fig. 8

Comparison of frequency-estimation errors for unknown and known phases.

Fig. 9
Fig. 9

OPD estimations under three illuminations: (a) source spectra, (b) OPD estimations.

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

L = 2 n e d ,
E = E 1 + E 2 = η 1 R 1 E 0 + η 2 R 2 E 0 exp [ j ( k L + ϕ ) ] ,
I = E 2 = E 0 2 [ η 1 2 R 1 2 + η 2 2 R 2 2 + 2 η 1 η 2 R 1 R 2 cos ( k L + ϕ ) ] = I 0 [ A + B cos ( k L + ϕ ) ] ,
I ( k n ) = A I 0 ( k n ) + B I 0 ( k n ) cos ( k n L + ϕ ) + v ( k n ) ,
I N ( k n ) = I ( k n ) I 0 ( k n ) = A + B cos ( k n L + ϕ ) + ξ ( k n ) .
I ( k ) = I 0 ( k ) exp [ j ( k L + ϕ ) ] .
n d = ( M f - 1 ) / 2 ,
x ¯ n = A ¯ n exp [ j ( k n L + ϕ ) ] + v ¯ n = A ¯ n exp [ j ( k s L n + k 0 L + ϕ ) ] + v ¯ n ( n = 1 ,     2 ,         N ) ,
ω = k s L
x n = A exp [ j ( ω n + ϕ ) ] + v n ,
ϕ n = [ x ¯ n ] 2 π = k n L + ϕ + ζ n             ( n = [ 1 ,     ,     N ] ) ,
S = Σ [ ϕ n - k n L ^ - ϕ ^ ] 2 .
[ L ^ ϕ ^ ] = ( A T A ) - 1 A T Φ ,
A = [ k 1 k 2 k N 1 1 1 ] T , Φ = [ ϕ 1 ϕ 2 ϕ N ] T .
Φ ϕ n = k n Δ L ,
Δ ϕ = [ ϕ ^ - ϕ ]
[ ϕ ^ - ϕ ˜ ] ,
S = Σ [ Δ ϕ - k n Δ L ^ ] 2
Δ L ^ = ( C T C ) - 1 C T D ,
C = [ k 1             k 2                         k N ] T , D = [ Δ ϕ             Δ ϕ                         Δ ϕ ] T .
L ˜ = L ^ + Δ L ^ .
I ( k n ) = A I 0 ( k n ) + i = 1 M B i I 0 ( k n ) cos ( 2 π k n L i + ϕ i ) + v ( k n ) ,
E = E 1 + E 2 + E 3 = η 0 R 0 E 0 + η 1 R 1 E 0 exp [ j ( k L 1 + ϕ 1 ) ] + η 2 R 2 E 0 exp [ j ( k L 1 + ϕ 1 ) ] exp [ j ( k L 2 + ϕ 2 ) ] ,
I = E 2 = I 0 [ A + B cos ( k L 1 + ϕ 1 ) + C cos ( k L 2 + ϕ 2 ) + D cos ( k L 3 + ϕ 3 ) ] ,
Δ L = 2 ( Δ n e d + n e Δ d ) = L ( Δ n e n e + Δ d d ) .
Δ L 1 = L 1 Δ d d = L 1 α T Δ T ,
Δ n e = n e T Δ T ,
Δ L 2 = L 2 ( n e T / n e + α T ) Δ T = L 2 ( σ T + α T ) Δ T ,
δ ϕ = δ k L + k δ L = δ k L + k α L = ( δ k + k α ) L ,

Metrics