Abstract

We demonstrate a method of chemical mapping by using the transillumination terahertz (THz) images obtained by two-dimensional electro-optic THz imaging. The images and spectral data were measured between 0.1 and 1.0 THz. An experimental sample consisting of three chemicals was prepared, with one in two concentrations. By introducing the component spatial pattern analysis based on the least-squares method, the chemical composition, spatial distribution, and difference in concentration were clearly determined.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [CrossRef]
  2. D. Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, 2003).
    [CrossRef]
  3. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
    [CrossRef]
  4. A. Fitzgerald, J. Chamberlin, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
    [CrossRef] [PubMed]
  5. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
    [CrossRef]
  6. Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging,” Appl. Opt. 42, 5744–5748 (2003).
    [CrossRef] [PubMed]
  7. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Nondestructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
    [CrossRef] [PubMed]
  8. Q. Wu, T. D. Hewitt, X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
    [CrossRef]
  9. M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
    [CrossRef] [PubMed]
  10. M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
    [CrossRef]
  11. C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).
    [CrossRef]

2003 (4)

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging,” Appl. Opt. 42, 5744–5748 (2003).
[CrossRef] [PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, “Nondestructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
[CrossRef] [PubMed]

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

2002 (4)

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[CrossRef]

A. Fitzgerald, J. Chamberlin, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[CrossRef] [PubMed]

1996 (1)

Q. Wu, T. D. Hewitt, X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Chamberlin, J.

A. Fitzgerald, J. Chamberlin, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[CrossRef] [PubMed]

Ferguson, B.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Fitzgerald, A.

A. Fitzgerald, J. Chamberlin, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[CrossRef] [PubMed]

Fukasawa, R.

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

Hanson, R. J.

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).
[CrossRef]

Hewitt, T. D.

Q. Wu, T. D. Hewitt, X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Ikari, T.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging,” Appl. Opt. 42, 5744–5748 (2003).
[CrossRef] [PubMed]

Inoue, H.

Ishikawa, Y.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging,” Appl. Opt. 42, 5744–5748 (2003).
[CrossRef] [PubMed]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
[CrossRef]

Ito, H.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging,” Appl. Opt. 42, 5744–5748 (2003).
[CrossRef] [PubMed]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
[CrossRef]

Iwamoto, T.

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

Kawase, K.

Lawson, C. L.

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).
[CrossRef]

Minamide, H.

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging,” Appl. Opt. 42, 5744–5748 (2003).
[CrossRef] [PubMed]

Ogawa, Y.

Sakai, K.

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

Siegel, P. H.

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[CrossRef]

Tani, M.

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

Usami, M.

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

Watanabe, M.

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

Watanabe, Y.

Wu, Q.

Q. Wu, T. D. Hewitt, X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Zhang, X.-C.

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Q. Wu, T. D. Hewitt, X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

Q. Wu, T. D. Hewitt, X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996).
[CrossRef]

Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging,” Appl. Phys. Lett. 83, 800–802 (2003).
[CrossRef]

Electron. Lett. (1)

M. Usami, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Calibration free terahertz imaging based on 2D electro-optic sampling technique,” Electron. Lett. 39, 1746–1747 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. H. Siegel, “Terahertz technology,” IEEE Trans. Microwave Theory Tech. 50, 910–928 (2002).
[CrossRef]

Nat. Mater. (1)

B. Ferguson, X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[CrossRef]

Opt. Express (1)

Phys. Med. Biol. (2)

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, K. Sakai, “Development of a THz spectroscopic imaging system,” Phys. Med. Biol. 47, 3749–3753 (2002).
[CrossRef] [PubMed]

A. Fitzgerald, J. Chamberlin, “An introduction to medical imaging with coherent terahertz frequency radiation,” Phys. Med. Biol. 47, R67–R84 (2002).
[CrossRef] [PubMed]

Other (2)

D. Mittleman, ed., Sensing with Terahertz Radiation (Springer-Verlag, 2003).
[CrossRef]

C. L. Lawson, R. J. Hanson, Solving Least Squares Problems (Society for Industrial and Applied Mathematics, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the THz spectroscopic imaging system based on the two-dimensional EO sampling technique. The focal length of the polyethylene lens is 100 mm.

Fig. 2
Fig. 2

Spectral datasets for the four components: malachite green, biotin, cystine, and the frequency-independent component. I0 and It are incident and transmitted amplitudes, respectively.

Fig. 3
Fig. 3

(a) Schematic of the sample and (b)–(f) five multispectral images from matrix [I]. The images correspond to the following frequencies: (b) 0.25, (c) 0.38, (d) 0.54, (e) 0.70, (f) 0.92 THz.

Fig. 4
Fig. 4

Extracted spatial patterns of (a) malachite green, (b) biotin, and (c) cystine. The three chemicals are clearly separated and the corresponding spatial patterns are obtained. (d) The frequency-independent component.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

[ I ] = [ S ] [ P ] ,
[ P ] = ( [ S ] t [ S ] ) - 1 [ S ] t [ I ] ,

Metrics