Abstract

Within the preliminary development of a low-cost active optics system (AOS), computer simulations have been performed. The general purpose of simulations is to find an optimal scheme for the wavefront control of the primary mirror. We present results for the wavefront sensor of the AOS proposed for the 2.1 m telescope at San Pedro Mártir. The method presented here can be used for any other telescopes as well.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Salas, L. Gutiérrez, M. H. Pedrayes, J. Valdez, C. Carrasco, M. Carrillo, B. Orozco, B. Garcia, E. Luna, E. Ruiz, S. Cuevas, A. Iriarte, A. Cordero, O. Harris, F. Quiroz, E. Sohn, L. A. Martinez, “Active primary mirror support for the 2.1-m telescope at San Pedro Mártir Observatory,” Appl. Opt. 36, 3708–3716 (1997).
    [CrossRef] [PubMed]
  2. V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
    [CrossRef]
  3. M. R. Teague, “Deterministic phase retrieval: a Green’s function solution,” J. Opt. Soc. Am. 73, 1434–1441 (1983).
    [CrossRef]
  4. C. Roddier, F. Roddier, “Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes,” J. Opt. Soc. Am. A 10, 2277–2287 (1993).
    [CrossRef]
  5. F. Roddier, C. Roddier, “Wavefront reconstruction using iterative Fourier transforms,” Appl. Opt. 30, 1325–1327 (1991).
    [CrossRef] [PubMed]
  6. M. Milman, D. Redding, L. Needels, “Analysis of curvature sensing for large-aperture adaptive optics systems,” J. Opt. Soc. Am. A 13, 1226–1238 (1996).
    [CrossRef]
  7. A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
    [CrossRef]
  8. A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
    [CrossRef]
  9. G. Ganesh Chandan, R. M. Vasu, S. Asokan, “Tomographic imaging of phase objects in turbid media through quantitative estimate of phase of ballistic light,” Opt. Commun. 191, 9–14 (2001).
    [CrossRef]
  10. J. A. Quiroga, J. A. Gómez-Pedrero, J. C. Martínez-Antón, “Wavefront measurement by solving the irradiance transport equation for multifocal systems,” Opt. Eng. 40, 2885–2891 (2001).
    [CrossRef]
  11. P. J. Fox, T. R. Mackin, L. D. Turner, I. Colton, K. A. Nugent, R. E. Scholten, “Noninterferometric phase imaging of a neutral atomic beam,” J. Opt. Soc. Am. B 19, 1773–1776 (2002).
    [CrossRef]
  12. M. Soto, E. Acosta, S. Rios, “Performance analysis of curvature sensors: optimum positioning of the measurement planes,” Opt. Express 11, 2577–2588 (2003).
    [CrossRef] [PubMed]

2003 (1)

2002 (1)

2001 (2)

G. Ganesh Chandan, R. M. Vasu, S. Asokan, “Tomographic imaging of phase objects in turbid media through quantitative estimate of phase of ballistic light,” Opt. Commun. 191, 9–14 (2001).
[CrossRef]

J. A. Quiroga, J. A. Gómez-Pedrero, J. C. Martínez-Antón, “Wavefront measurement by solving the irradiance transport equation for multifocal systems,” Opt. Eng. 40, 2885–2891 (2001).
[CrossRef]

2000 (1)

A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

1998 (1)

1997 (1)

1996 (1)

1993 (1)

1991 (1)

1983 (1)

Acosta, E.

Asokan, S.

G. Ganesh Chandan, R. M. Vasu, S. Asokan, “Tomographic imaging of phase objects in turbid media through quantitative estimate of phase of ballistic light,” Opt. Commun. 191, 9–14 (2001).
[CrossRef]

Barty, A.

A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

Carrasco, C.

Carrillo, M.

Colton, I.

Cordero, A.

Cuevas, S.

L. Salas, L. Gutiérrez, M. H. Pedrayes, J. Valdez, C. Carrasco, M. Carrillo, B. Orozco, B. Garcia, E. Luna, E. Ruiz, S. Cuevas, A. Iriarte, A. Cordero, O. Harris, F. Quiroz, E. Sohn, L. A. Martinez, “Active primary mirror support for the 2.1-m telescope at San Pedro Mártir Observatory,” Appl. Opt. 36, 3708–3716 (1997).
[CrossRef] [PubMed]

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Fox, P. J.

Ganesh Chandan, G.

G. Ganesh Chandan, R. M. Vasu, S. Asokan, “Tomographic imaging of phase objects in turbid media through quantitative estimate of phase of ballistic light,” Opt. Commun. 191, 9–14 (2001).
[CrossRef]

Garcia, B.

Garfias, F.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Gómez-Pedrero, J. A.

J. A. Quiroga, J. A. Gómez-Pedrero, J. C. Martínez-Antón, “Wavefront measurement by solving the irradiance transport equation for multifocal systems,” Opt. Eng. 40, 2885–2891 (2001).
[CrossRef]

Gutiérrez, L.

Harris, O.

Iriarte, A.

Luna, E.

Mackin, T. R.

Martinez, L. A.

Martínez-Antón, J. C.

J. A. Quiroga, J. A. Gómez-Pedrero, J. C. Martínez-Antón, “Wavefront measurement by solving the irradiance transport equation for multifocal systems,” Opt. Eng. 40, 2885–2891 (2001).
[CrossRef]

Milman, M.

Needels, L.

Nugent, K. A.

Orlov, V. G.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Orozco, B.

Paganin, D.

A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

Pedrayes, M. H.

Quiroga, J. A.

J. A. Quiroga, J. A. Gómez-Pedrero, J. C. Martínez-Antón, “Wavefront measurement by solving the irradiance transport equation for multifocal systems,” Opt. Eng. 40, 2885–2891 (2001).
[CrossRef]

Quiroz, F.

Redding, D.

Rios, S.

Roberts, A.

A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).
[CrossRef]

Roddier, C.

Roddier, F.

Ruiz, E.

Salas, L.

Sánchez, L. J.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Scholten, R. E.

Sohn, E.

Soto, M.

Teague, M. R.

Turner, L. D.

Valdez, J.

Vasu, R. M.

G. Ganesh Chandan, R. M. Vasu, S. Asokan, “Tomographic imaging of phase objects in turbid media through quantitative estimate of phase of ballistic light,” Opt. Commun. 191, 9–14 (2001).
[CrossRef]

Voitsekhovich, V. V.

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

A. Barty, K. A. Nugent, A. Roberts, D. Paganin, “Quantitative phase tomography,” Opt. Commun. 175, 329–336 (2000).
[CrossRef]

G. Ganesh Chandan, R. M. Vasu, S. Asokan, “Tomographic imaging of phase objects in turbid media through quantitative estimate of phase of ballistic light,” Opt. Commun. 191, 9–14 (2001).
[CrossRef]

Opt. Eng. (1)

J. A. Quiroga, J. A. Gómez-Pedrero, J. C. Martínez-Antón, “Wavefront measurement by solving the irradiance transport equation for multifocal systems,” Opt. Eng. 40, 2885–2891 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (1)

V. G. Orlov, S. Cuevas, F. Garfias, V. V. Voitsekhovich, L. J. Sánchez, “Co-phasing of segmented mirror telescopes with curvature sensing,” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. A. Sebring, T. Andersen, eds., Proc. SPIE4004, 540–551 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic geometry of the active SS.

Fig. 2
Fig. 2

Measurement scheme of the output plane and a slightly displaced output plane.

Fig. 3
Fig. 3

(Left) Initial phase screen and (right) phase screen reconstructed with Eq. (8); rmsϕ = 200 nm and Z = 0.8 cm.

Fig. 4
Fig. 4

Estimate parameter R as a function of propagation distance z for a rms of 300 nm (solid curve), a rms of 200 nm (dotted curve), a rms of 160 nm (short dashed curve), a rms of 120 nm (dash–dot curve), a rms of 80 nm (dash–triple dot curve), and a rms of 40 nm (long dashed curve).

Tables (1)

Tables Icon

Table 1 Dispersion of Zernike Coefficients

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

k z I = - · ( I ϕ ) = - I Δ ϕ - I · ϕ ,
Δ ϕ = - k I z I 2 k ( I b - I a ) z ( I a + I b ) = S ( r ) ,
u z ( r z ) = - i exp ( i k z ) λ z u p ( r ) exp [ i k 2 z ( r - r z ) 2 ] d r ,
H z ( w ) = U z ( w ) U p ( w ) = const exp ( - i z k w 2 ) ,
H z ( m ,     n ) = exp [ - i 2 π 2 z ( m 2 s x 2 M 2 k + n 2 s y 2 N 2 k ) ] ,
u z ( μ ,     η ) = FFT - 1 { H z ( m ,     n ) FFT [ u p ( μ ,     η ) ] } ,
ϕ ( r ) = i = 4 28 α i Z i ( r ) ,
ϕ e ( r ) = FFT - 1 { FFT [ S ( r ) ] w 2 } ,
R = rms res rms ϕ = p [ ϕ - ϕ e ] 2 d r / p ϕ 2 d r

Metrics