Abstract

A gain-switched, single-frequency titanium–sapphire laser for atmospheric humidity measurements using the differential absorption lidar technique operating in the 820 nm wavelength region is described. The laser is pumped by a frequency-doubled, flashlamp-pumped Nd:YAG laser at a repetition rate of 50 Hz and injection seeded by two external-cavity-diode lasers. The system yields pulses with an energy of 15 mJ and high spectral purity. We describe a novel active injection-locking technique that avoids the problems of established methods like dither-lock or ramp-and-fire. Furthermore, our method opens the possibility to switch between two wavelengths for alternating shots, in contrast to most established techniques that only allow operation at one wavelength.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Walther, M. P. Larsen, E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001).
    [CrossRef]
  2. K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000).
    [CrossRef]
  3. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  4. C. L. Korb, B. M. Gentry, C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31, 4202–4212 (1992).
    [CrossRef] [PubMed]
  5. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3732 (1983).
    [CrossRef] [PubMed]
  6. R. D. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of 4th Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.
  7. J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
    [CrossRef]
  8. A. D. White, “Frequency stabilization of gas lasers,” IEEE J. Quantum Electron. 1, 349–349 (1965).
    [CrossRef]
  9. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  10. S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single frequency operation of injection seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
    [CrossRef] [PubMed]
  11. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
    [CrossRef] [PubMed]
  12. G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
    [CrossRef]
  13. T. D. Raymond, A. V. Smith, “Injection-seeded titanium-doped-sapphire laser,” Opt. Lett. 16, 33–35 (1991).
    [CrossRef] [PubMed]
  14. C. E. Hamilton, “Single-frequency, injection-seeded Ti:sapphire ring laser with high temporal precision,” Opt. Lett. 17, 728–730 (1992).
    [CrossRef] [PubMed]
  15. G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.
  16. A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997).
    [CrossRef]
  17. R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
    [CrossRef] [PubMed]
  18. P. L. Ponsardin, E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
    [CrossRef] [PubMed]
  19. S. Lehmann, “Ein Heterodyn-DIAL System für die simultane Messung von Wasserdampf und Vertikalwind: Aufbau und Erprobung,” Ph.D. Thesis (University of Hamburg, 2001).
  20. J. Bösenberg, H. Linné, “Laser remote sensing of the planetary boundary layer,” Meteorol. Z. 11, 233–240 (2002).
    [CrossRef]

2002 (2)

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

J. Bösenberg, H. Linné, “Laser remote sensing of the planetary boundary layer,” Meteorol. Z. 11, 233–240 (2002).
[CrossRef]

2001 (2)

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

T. Walther, M. P. Larsen, E. S. Fry, “Generation of Fourier-transform-limited 35-ns pulses with a ramp-hold-fire seeding technique in a Ti:sapphire laser,” Appl. Opt. 40, 3046–3050 (2001).
[CrossRef]

2000 (1)

K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000).
[CrossRef]

1998 (1)

1997 (2)

P. L. Ponsardin, E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997).
[CrossRef]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

1992 (2)

1991 (1)

1986 (1)

1985 (1)

1983 (1)

1980 (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

1965 (1)

A. D. White, “Frequency stabilization of gas lasers,” IEEE J. Quantum Electron. 1, 349–349 (1965).
[CrossRef]

Assion, A.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Ballard, J.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Belmiloud, D.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Bösenberg, J.

J. Bösenberg, H. Linné, “Laser remote sensing of the planetary boundary layer,” Meteorol. Z. 11, 233–240 (2002).
[CrossRef]

J. Bösenberg, “Ground-based differential absorption lidar for water vapor and temperature profiling: methodology,” Appl. Opt. 37, 3845–3860 (1998).
[CrossRef]

Browell, E. V.

P. L. Ponsardin, E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Bushaw, B. A.

K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000).
[CrossRef]

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Dunn, M. H.

G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.

Ebrahimzadeh, M.

G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.

Ehret, G.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Eloranta, E. W.

Fix, A.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Fry, E. S.

Gentry, B. M.

Hakuta, K.

A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997).
[CrossRef]

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hamilton, C. E.

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hänsch, T. W.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single frequency operation of injection seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
[CrossRef] [PubMed]

Katsuragawa, M.

A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997).
[CrossRef]

Kiemle, C.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Korb, C. L.

Larsen, M. P.

Learner, R. C. M.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Lehmann, S.

S. Lehmann, “Ein Heterodyn-DIAL System für die simultane Messung von Wasserdampf und Vertikalwind: Aufbau und Erprobung,” Ph.D. Thesis (University of Hamburg, 2001).

Linné, H.

J. Bösenberg, H. Linné, “Laser remote sensing of the planetary boundary layer,” Meteorol. Z. 11, 233–240 (2002).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Morrison, G. R.

G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.

Newnham, D. A.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Ogino, A.

A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997).
[CrossRef]

Poberaj, G.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Ponsardin, P. L.

P. L. Ponsardin, E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

Rahlff, C. P.

G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.

Rahn, L. A.

Raymond, T. D.

Roesler, F. L.

Schermaul, R.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Schotland, R. D.

R. D. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of 4th Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.

Shipley, S. T.

Smith, A. V.

Sroga, J. T.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Tennyson, J.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Tracy, D. H.

Trauger, J. T.

Trautmann, N.

K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000).
[CrossRef]

Walther, T.

Weinman, J. A.

Wendt, K.

K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000).
[CrossRef]

Weng, C. Y.

White, A. D.

A. D. White, “Frequency stabilization of gas lasers,” IEEE J. Quantum Electron. 1, 349–349 (1965).
[CrossRef]

Wirth, M.

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

S. W. Henderson, E. H. Yuen, E. S. Fry, “Fast resonance-detection technique for single frequency operation of injection seeded Nd:YAG lasers,” Opt. Lett. 11, 715–717 (1986).
[CrossRef] [PubMed]

Zobov, N. F.

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (1)

G. Poberaj, A. Fix, A. Assion, M. Wirth, C. Kiemle, G. Ehret, “Airborne all-solid-state DIAL for water vapour measurements in the tropopause region: system description and assessment of accuracy,” Appl. Phys. B 75, 165–172 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. D. White, “Frequency stabilization of gas lasers,” IEEE J. Quantum Electron. 1, 349–349 (1965).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

J. Mol. Spectrosc. (2)

R. Schermaul, R. C. M. Learner, D. A. Newnham, J. Ballard, N. F. Zobov, D. Belmiloud, J. Tennyson, “The water vapor spectrum in the region 8800–15000 cm−1: experimental and theoretical studies for a new spectral line database. II. Linelist construction,” J. Mol. Spectrosc. 208, 43–50 (2001).
[CrossRef] [PubMed]

P. L. Ponsardin, E. V. Browell, “Measurements of H216O linestrengths and air-induced broadenings and shifts in the 815-nm spectral region,” J. Mol. Spectrosc. 185, 58–70 (1997).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. 1 (1)

A. Ogino, M. Katsuragawa, K. Hakuta, “Single-frequency injection seeded pulsed Ti:Al2O3ring laser,” Jpn. J. Appl. Phys. 1 36, 5112–5115 (1997).
[CrossRef]

Meteorol. Z. (1)

J. Bösenberg, H. Linné, “Laser remote sensing of the planetary boundary layer,” Meteorol. Z. 11, 233–240 (2002).
[CrossRef]

Nucl. Instrum. Meth. B (1)

K. Wendt, N. Trautmann, B. A. Bushaw, “Resonant laser ionization mass spectrometry: an alternative to AMS?,” Nucl. Instrum. Meth. B 174, 162–169 (2000).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Opt. Lett. (3)

Other (3)

G. R. Morrison, C. P. Rahlff, M. Ebrahimzadeh, M. H. Dunn, “A high-average-power all-solid-state, single-frequency Ti:sapphire laser,” in Conference on Lasers and Electro-Optics, Vol. 9 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 111–112.

S. Lehmann, “Ein Heterodyn-DIAL System für die simultane Messung von Wasserdampf und Vertikalwind: Aufbau und Erprobung,” Ph.D. Thesis (University of Hamburg, 2001).

R. D. Schotland, “Some observations of the vertical profile of water vapor by means of a ground based optical radar,” in Proceedings of 4th Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, Mich., 1966), pp. 273–283.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup; only the slave resonator is drawn to scale.

Fig. 2
Fig. 2

Principle of slave resonator stabilization: the delay of the resonance peaks can be controlled by varying the offset voltage Uoffs.

Fig. 3
Fig. 3

Measured seed efficiency ηseed as a function of resonance peak delay at 8.2 mW seed power.

Fig. 4
Fig. 4

Measured and calculated transmission of injection-seeded pulses through a long path absorption cell as a function of wavenumber.

Fig. 5
Fig. 5

Measured seed efficiency ηseed as a function of seed power at optimum delay.

Fig. 6
Fig. 6

Stability of (a) resonance peak delay and (b) seed efficiency ηseed, recorded over 11.5 h.

Fig. 7
Fig. 7

Output pulse energy as a function of pump energy for seeded and unseeded operation.

Fig. 8
Fig. 8

Heterodyne measurement for determining the spectrum of a laser pulse: (a) beat signal, (b) spectral intensity. The solid curve in (b) shows the measured spectrum, the dotted curve a calculated one, using a synthetic, chirp-free signal with the same envelope as measured.

Metrics