Abstract

We present a novel scheme of tunable semiconductor laser based on the use of a chirped grating in an external cavity. The chirped grating is fabricated using a simple holographic technique: two Gaussian beams having wavefronts with different radii of curvature are brought to interfere on a photoresist layer. The tuning properties of chirped gratings have been investigated with semiconductor lasers operated with an external cavity. With this type of grating positioned in Littrow configuration, the wavelength selection can be done by translating the grating without any need to rotate it. This cavity configuration provides a tunable output beam with an angle of propagation that is independent of the wavelength. The translation of chirped gratings was shown to tune a visible diode laser and an infrared diode laser over the same spectral band as the conventional tuning scheme where an unchirped grating is rotated.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Laurila, T. Joutsenoja, R. Hernberg, M. Kuittinen, “Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating,” Appl. Opt. 41, 5632–5637 (2002).
    [CrossRef] [PubMed]
  2. M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
    [CrossRef]
  3. L. Levin, “Mode-hop-free electro-optically tuned diode laser,” Opt. Lett. 27, 237–239 (2002).
    [CrossRef]
  4. B. Boggs, C. Greiner, T. Wang, H. Lin, T. W. Mossberg, “Simple high-coherence rapidly tunable external-cavity diode laser,” Opt. Lett. 23, 1906–1908 (1998).
    [CrossRef]
  5. C. Greiner, B. Boggs, T. Wang, T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23, 1280–1282 (1998).
    [CrossRef]
  6. K. S. Repasky, G. W. Switzer, J. L. Carlsten, “Design and performance of a frequency chirped external cavity diode laser,” Rev. Sci. Instrum. 73, 3154–3159 (2002).
    [CrossRef]
  7. K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
    [CrossRef]
  8. K. C. Harvey, C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]
  9. C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
    [CrossRef]
  10. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986). See especially section 11.7.
  11. P. Zorabedian, W. R. Trunta, “Alignment-stabilized grating-tuned external-cavity semiconductor laser,” Opt. Lett. 15, 483–485 (1990).
    [CrossRef] [PubMed]
  12. A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
    [CrossRef]
  13. K. C. Harvey, C. J. Myatt, “External cavity diode laser using a grazing incidence diffraction grating,” Opt. Lett. 16, 910–912 (1991).
    [CrossRef] [PubMed]
  14. P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
    [CrossRef]
  15. C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
    [CrossRef]
  16. J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of diode lasers,” Appl. Opt. 36, 4993–4998 (1997).
    [CrossRef] [PubMed]
  17. J.-F. Lepage, “Réseaux holographiques apodisants pour le contrôle modal des lasers à semi-conducteurs,” Master’s thesis (Université Laval, Québec, Canada, 1999).
  18. R. Massudi, “Modal control of laser resonators by conventional and holographic mirrors,” Ph.D. thesis (Université Laval, Québec, Canada, 1999).
  19. G. Loewen, M. Nevrière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
    [CrossRef] [PubMed]
  20. M. G. Moharam, T. K. Gaylord, “Rigourous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  21. C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
    [CrossRef]

2003 (1)

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

2002 (3)

2001 (2)

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

2000 (1)

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

1998 (2)

1997 (1)

1996 (1)

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

1992 (1)

P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

1991 (3)

1990 (1)

1986 (1)

1977 (1)

Anctil, G.

Beijerinck, H. C. W.

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

Beyea, D. M.

P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Boggs, B.

Budzinski, C.

C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
[CrossRef]

Carlsten, J. L.

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

K. S. Repasky, G. W. Switzer, J. L. Carlsten, “Design and performance of a frequency chirped external cavity diode laser,” Rev. Sci. Instrum. 73, 3154–3159 (2002).
[CrossRef]

Chelnokov, A. V.

P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Fafard, S.

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

Fey-den Boer, A. C.

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

Finnie, P.

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

Fort, C.

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

Gaylord, T. K.

Gilbert, S.

Gravilovic, P.

P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Greiner, C.

Grunwald, R.

C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
[CrossRef]

Harvey, K. C.

Hawthorn, C. J.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Hernberg, R.

Ikonen, E.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Joutsenoja, T.

Kuittinen, M.

T. Laurila, T. Joutsenoja, R. Hernberg, M. Kuittinen, “Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating,” Appl. Opt. 41, 5632–5637 (2002).
[CrossRef] [PubMed]

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Laakkonen, P.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Laurila, T.

Lepage, J.-F.

J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of diode lasers,” Appl. Opt. 36, 4993–4998 (1997).
[CrossRef] [PubMed]

J.-F. Lepage, “Réseaux holographiques apodisants pour le contrôle modal des lasers à semi-conducteurs,” Master’s thesis (Université Laval, Québec, Canada, 1999).

Levin, L.

Lin, H.

Loewen, G.

Massudi, R.

J.-F. Lepage, R. Massudi, G. Anctil, S. Gilbert, M. Piché, N. McCarthy, “Apodizing holographic gratings for the modal control of diode lasers,” Appl. Opt. 36, 4993–4998 (1997).
[CrossRef] [PubMed]

R. Massudi, “Modal control of laser resonators by conventional and holographic mirrors,” Ph.D. thesis (Université Laval, Québec, Canada, 1999).

Maystre, D.

McCarthy, N.

Merimaa, M.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Moharam, M. G.

Mossberg, T. W.

Myatt, C. J.

Nevrière, M.

Nì Allen, C.

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

Noonan, E. J.

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

O’Neill, M. S.

P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

Pavone, F. S.

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

Piché, M.

Pinz, I.

C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
[CrossRef]

Raymond, S.

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

Repasky, K. S.

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

K. S. Repasky, G. W. Switzer, J. L. Carlsten, “Design and performance of a frequency chirped external cavity diode laser,” Rev. Sci. Instrum. 73, 3154–3159 (2002).
[CrossRef]

Schäfer, D.

C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
[CrossRef]

Scholten, R. E.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Schönnagel, H.

C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986). See especially section 11.7.

Switzer, G. W.

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

K. S. Repasky, G. W. Switzer, J. L. Carlsten, “Design and performance of a frequency chirped external cavity diode laser,” Rev. Sci. Instrum. 73, 3154–3159 (2002).
[CrossRef]

Talvitie, H.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Tittonen, I.

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Trunta, W. R.

van Leeuwen, K. A. H.

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

Wang, T.

Wasilewski, Z. R.

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

Weber, K. P.

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Williams, J. D.

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

Zorabedian, P.

Appl. Opt. (3)

Appl. Phys. B (1)

A. C. Fey-den Boer, K. A. H. van Leeuwen, H. C. W. Beijerinck, C. Fort, F. S. Pavone, “Grating feedback in a 810 nm broad-area diode laser,” Appl. Phys. B 63, 117–120 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

P. Gravilovic, A. V. Chelnokov, M. S. O’Neill, D. M. Beyea, “Narrow-linewidth operation of broad-strip single quantum well laser diodes in a grazing incidence external cavity,” Appl. Phys. Lett. 60, 2977–2979 (1992).
[CrossRef]

C. Nì Allen, P. Finnie, S. Raymond, Z. R. Wasilewski, S. Fafard, “Inhomogeneous broadening in quantum dots with ternary aluminum alloys,” Appl. Phys. Lett. 79, 2701–2703 (2001).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

M. Merimaa, H. Talvitie, P. Laakkonen, M. Kuittinen, I. Tittonen, E. Ikonen, “Compact external-cavity diode laser with a novel transmission geometry,” Opt. Commun. 174, 175–180 (2000).
[CrossRef]

Opt. Eng. (1)

K. S. Repasky, J. D. Williams, J. L. Carlsten, E. J. Noonan, G. W. Switzer, “Tunable external-cavity diode laser based on integrated waveguide structures,” Opt. Eng. 42, 2229–2234 (2003).
[CrossRef]

Opt. Lett. (6)

Proc. SPIE (1)

C. Budzinski, R. Grunwald, I. Pinz, D. Schäfer, H. Schönnagel, “Apodized outcouplers for unstable resonators,” Proc. SPIE 1500, 264–274 (1991).
[CrossRef]

Rev. Sci. Instrum. (2)

K. S. Repasky, G. W. Switzer, J. L. Carlsten, “Design and performance of a frequency chirped external cavity diode laser,” Rev. Sci. Instrum. 73, 3154–3159 (2002).
[CrossRef]

C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986). See especially section 11.7.

J.-F. Lepage, “Réseaux holographiques apodisants pour le contrôle modal des lasers à semi-conducteurs,” Master’s thesis (Université Laval, Québec, Canada, 1999).

R. Massudi, “Modal control of laser resonators by conventional and holographic mirrors,” Ph.D. thesis (Université Laval, Québec, Canada, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup used to write chirped gratings: Li, lenses; BS, beam splitter. The two beams interfere on the photoresist layer.

Fig. 2
Fig. 2

Calculated interference patterns generated by writing beams with the same radii of curvature along the y axis (R1y = R2y). In (a) R1x = R2x, (b) R1x = 28.74 R2x.

Fig. 3
Fig. 3

Normalized reflectivity profiles along the x axis of (a) unchirped grating A (constant period), (b) chirped grating B, and (c) chirped grating C. Figures (a) and (b) have been measured with λ = 632.8 nm, and figure (c) with λ = 840 nm. The corresponding Gaussian profiles are shown in dotted curves.

Fig. 4
Fig. 4

Measured period of gratings B and C as a function of position x on the grating surface. The dashed curve is the theoretical curve calculated from Eq. (1).

Fig. 5
Fig. 5

Scheme of the experimental setup: CL, collimating lens; PD, photodiode. The setup used for the spectral measurements and for the recording of the spectrally resolved near-field intensity distributions is also shown.

Fig. 6
Fig. 6

(a) Optical spectrum of the visible diode laser operated with unchirped grating A in an external cavity, at a power of 4.3 mW. The spectrum FWHM is 0.023 nm. (b) Optical output power of the visible diode laser at the different wavelengths tuned by rotating grating A.

Fig. 7
Fig. 7

Optical spectrum of the visible diode laser operated with chirped grating B in an external cavity, at a power of 4.6 mW. The spectrum FWHM is 0.017 nm.

Fig. 8
Fig. 8

(a) Wavelengths over which the visible diode laser has been tuned by translating chirped grating B. The horizontal axis is the position x (perpendicular to the grooves) on the grating surface. (b) Optical output power for each emitted wavelength.

Fig. 9
Fig. 9

Spectrally resolved near-field intensity distribution of the broad-area infrared diode laser operated with a flat mirror of 30% reflectivity in an external cavity, at an output power of 37 mW.

Fig. 10
Fig. 10

Optical spectrum of the broad-area diode laser operated with an external cavity ended by (a) the flat mirror, at an output power of 40 mW, and (b) chirped grating C, at an optical power of 42 mW.

Fig. 11
Fig. 11

(a) Wavelengths over which the broad-area diode laser has been tuned by translating chirped grating C. The horizontal axis is the position x (perpendicular to the grooves) on the grating surface. (b) Optical output power for each emitted wavelength.

Tables (2)

Tables Icon

Table 1 Parameters of Fabrication of Three Gratings

Tables Icon

Table 2 Reflectivity at the Center of Three Gratings

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 Λ ( x ) = 1 λ w | ( 1 R 1 x - 1 R 2 x ) x cos 2 θ - 2 sin θ | ,
λ w 3 λ < sin θ < λ w λ ,

Metrics