Abstract

Experimental measurements of laser-induced ionization were performed for ethene–air premixed flames operated near the soot inception point. Soot was ionized with a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the postflame region. Ionization signals were collected by use of both single-electrode and dual-electrode configurations. Earlier laser-induced-ionization studies focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the laser-induced-ionization diagnostic to these geometries, a dual-electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the laser-induced-ionization diagnostic in detecting soot inception in the postflame region of a premixed flame by use of a dual-electrode configuration was investigated. Of the dual-electrode configurations tested, the dual-electrode geometry oriented parallel to the laser beam was observed to be most sensitive for detecting the soot inception point in a premixed flame.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Glassman, “Soot formation in combustion process,” Proc. Combust. Inst. 22, 295–311 (1988).
    [Crossref]
  2. H. Richter, J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways,” Proc. Combust. Inst. 26, 565–608 (2000).
    [Crossref]
  3. I. M. Kennedy, “Models of soot formation and oxidization,” Prog. Energy Combust. Sci. 23, 95–132 (1997).
    [Crossref]
  4. S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.
  5. K. C. Smyth, W. G. Mallard, “Laser-induced ionization and mobility measurements of very small particles in premixed flames at the sooting limit,” Combust. Sci. Technol. 26, 35–41 (1981).
    [Crossref]
  6. W. G. Mallard, K. C. Smyth, “Mobility measurements of atomic Ions in flames using laser-enhanced ionization,” Combust. Flame 44, 61–70 (1982).
    [Crossref]
  7. B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
    [Crossref]
  8. M. M. Maricq, “Size and charge of soot particles in rich premixed ethylene flames,” Combust. Flame 137, 340–350 (2004).
    [Crossref]
  9. J. C. Travis, G. C. Turk, Laser-Enhanced Ionization Spectrometry (Wiley, 1996).
  10. A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
    [Crossref]
  11. B. S. Haynes, H. Gg. Wagner, “Optical studies of soot-formation processes in premixed flames,” Ber. Bunsenges. Phys. Chem. 84, 585–610 (1980).
    [Crossref]
  12. K. C. Smyth, P. J. H. Tjossem, “Relative H-atom and C-atom concentration measurements in a laminar, methane/air diffusion flame,” Proc. Combust. Inst. 23, 1829–1837 (1990).
    [Crossref]
  13. G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
    [Crossref]
  14. S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
    [Crossref]
  15. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [Crossref]
  16. P. Bengtsson, M. Aldén, “Optical investigation of laser-produced C2in premixed soot ethylene flames,” Combust. Flame 80, 322–328 (1990).
    [Crossref]
  17. A. C. Eckbreth, R. J. Hall, “CARS thermometry in a sooting flame,” Combust. Flame 36, 87–98 (1979).
    [Crossref]
  18. R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra, 4th ed. (Chapman & Hall, 1976).
    [Crossref]

2004 (1)

M. M. Maricq, “Size and charge of soot particles in rich premixed ethylene flames,” Combust. Flame 137, 340–350 (2004).
[Crossref]

2003 (1)

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

2000 (1)

H. Richter, J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways,” Proc. Combust. Inst. 26, 565–608 (2000).
[Crossref]

1997 (1)

I. M. Kennedy, “Models of soot formation and oxidization,” Prog. Energy Combust. Sci. 23, 95–132 (1997).
[Crossref]

1996 (1)

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

1990 (2)

P. Bengtsson, M. Aldén, “Optical investigation of laser-produced C2in premixed soot ethylene flames,” Combust. Flame 80, 322–328 (1990).
[Crossref]

K. C. Smyth, P. J. H. Tjossem, “Relative H-atom and C-atom concentration measurements in a laminar, methane/air diffusion flame,” Proc. Combust. Inst. 23, 1829–1837 (1990).
[Crossref]

1988 (1)

I. Glassman, “Soot formation in combustion process,” Proc. Combust. Inst. 22, 295–311 (1988).
[Crossref]

1982 (1)

W. G. Mallard, K. C. Smyth, “Mobility measurements of atomic Ions in flames using laser-enhanced ionization,” Combust. Flame 44, 61–70 (1982).
[Crossref]

1981 (1)

K. C. Smyth, W. G. Mallard, “Laser-induced ionization and mobility measurements of very small particles in premixed flames at the sooting limit,” Combust. Sci. Technol. 26, 35–41 (1981).
[Crossref]

1980 (1)

B. S. Haynes, H. Gg. Wagner, “Optical studies of soot-formation processes in premixed flames,” Ber. Bunsenges. Phys. Chem. 84, 585–610 (1980).
[Crossref]

1979 (1)

A. C. Eckbreth, R. J. Hall, “CARS thermometry in a sooting flame,” Combust. Flame 36, 87–98 (1979).
[Crossref]

1977 (1)

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

1974 (1)

S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
[Crossref]

1973 (1)

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

Aldén, M.

P. Bengtsson, M. Aldén, “Optical investigation of laser-produced C2in premixed soot ethylene flames,” Combust. Flame 80, 322–328 (1990).
[Crossref]

Bengtsson, P.

P. Bengtsson, M. Aldén, “Optical investigation of laser-produced C2in premixed soot ethylene flames,” Combust. Flame 80, 322–328 (1990).
[Crossref]

Beretta, F.

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

Borghese, A.

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

Carroll, D. I.

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

D’Alessio, A.

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

Di Lorenzo, A.

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

Donovan, M.

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

Dzidic, I.

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

Eckbreth, A. C.

A. C. Eckbreth, R. J. Hall, “CARS thermometry in a sooting flame,” Combust. Flame 36, 87–98 (1979).
[Crossref]

Gaydon, A. G.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra, 4th ed. (Chapman & Hall, 1976).
[Crossref]

Glassman, I.

I. Glassman, “Soot formation in combustion process,” Proc. Combust. Inst. 22, 295–311 (1988).
[Crossref]

Griffin, G. W.

S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
[Crossref]

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

Hall, R. J.

A. C. Eckbreth, R. J. Hall, “CARS thermometry in a sooting flame,” Combust. Flame 36, 87–98 (1979).
[Crossref]

Haynes, B. S.

B. S. Haynes, H. Gg. Wagner, “Optical studies of soot-formation processes in premixed flames,” Ber. Bunsenges. Phys. Chem. 84, 585–610 (1980).
[Crossref]

Horning, E. C.

S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
[Crossref]

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

Howard, J. B.

H. Richter, J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways,” Proc. Combust. Inst. 26, 565–608 (2000).
[Crossref]

Johnston, M.

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

Kennedy, I. M.

I. M. Kennedy, “Models of soot formation and oxidization,” Prog. Energy Combust. Sci. 23, 95–132 (1997).
[Crossref]

Lin, S. N.

S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
[Crossref]

Mallard, W. G.

W. G. Mallard, K. C. Smyth, “Mobility measurements of atomic Ions in flames using laser-enhanced ionization,” Combust. Flame 44, 61–70 (1982).
[Crossref]

K. C. Smyth, W. G. Mallard, “Laser-induced ionization and mobility measurements of very small particles in premixed flames at the sooting limit,” Combust. Sci. Technol. 26, 35–41 (1981).
[Crossref]

Manzello, S. L.

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

Maricq, M. M.

M. M. Maricq, “Size and charge of soot particles in rich premixed ethylene flames,” Combust. Flame 137, 340–350 (2004).
[Crossref]

Masi, S.

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

Mulholland, G. W.

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

Park, K.

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

Pearse, R. W. B.

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra, 4th ed. (Chapman & Hall, 1976).
[Crossref]

Richter, H.

H. Richter, J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways,” Proc. Combust. Inst. 26, 565–608 (2000).
[Crossref]

Shaddix, C. R.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

Smyth, K. C.

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

K. C. Smyth, P. J. H. Tjossem, “Relative H-atom and C-atom concentration measurements in a laminar, methane/air diffusion flame,” Proc. Combust. Inst. 23, 1829–1837 (1990).
[Crossref]

W. G. Mallard, K. C. Smyth, “Mobility measurements of atomic Ions in flames using laser-enhanced ionization,” Combust. Flame 44, 61–70 (1982).
[Crossref]

K. C. Smyth, W. G. Mallard, “Laser-induced ionization and mobility measurements of very small particles in premixed flames at the sooting limit,” Combust. Sci. Technol. 26, 35–41 (1981).
[Crossref]

Stilwell, R. N.

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

Tjossem, P. J. H.

K. C. Smyth, P. J. H. Tjossem, “Relative H-atom and C-atom concentration measurements in a laminar, methane/air diffusion flame,” Proc. Combust. Inst. 23, 1829–1837 (1990).
[Crossref]

Travis, J. C.

J. C. Travis, G. C. Turk, Laser-Enhanced Ionization Spectrometry (Wiley, 1996).

Tsang, W.

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

Turk, G. C.

J. C. Travis, G. C. Turk, Laser-Enhanced Ionization Spectrometry (Wiley, 1996).

Wagner, H. Gg.

B. S. Haynes, H. Gg. Wagner, “Optical studies of soot-formation processes in premixed flames,” Ber. Bunsenges. Phys. Chem. 84, 585–610 (1980).
[Crossref]

Wang, H.

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

Wang, J.

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

Wentworth, W. E.

S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
[Crossref]

Yang, Z.

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

Zachariah, M.

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

Zhao, B.

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

Aerosol Sci. Technol. (1)

B. Zhao, Z. Yang, J. Wang, M. Johnston, H. Wang, “Analysis of soot particles in a laminar premixed ethylene flame by scanning mobility particle sizer,” Aerosol Sci. Technol. 37, 611–620 (2003).
[Crossref]

Anal. Chem. (1)

G. W. Griffin, I. Dzidic, D. I. Carroll, R. N. Stilwell, E. C. Horning, “Ion mass assignments based on mobility measurements,” Anal. Chem. 45, 1204–1209 (1973).
[Crossref]

Ber. Bunsenges. Phys. Chem. (1)

B. S. Haynes, H. Gg. Wagner, “Optical studies of soot-formation processes in premixed flames,” Ber. Bunsenges. Phys. Chem. 84, 585–610 (1980).
[Crossref]

Combust. Flame (5)

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[Crossref]

P. Bengtsson, M. Aldén, “Optical investigation of laser-produced C2in premixed soot ethylene flames,” Combust. Flame 80, 322–328 (1990).
[Crossref]

A. C. Eckbreth, R. J. Hall, “CARS thermometry in a sooting flame,” Combust. Flame 36, 87–98 (1979).
[Crossref]

M. M. Maricq, “Size and charge of soot particles in rich premixed ethylene flames,” Combust. Flame 137, 340–350 (2004).
[Crossref]

W. G. Mallard, K. C. Smyth, “Mobility measurements of atomic Ions in flames using laser-enhanced ionization,” Combust. Flame 44, 61–70 (1982).
[Crossref]

Combust. Sci. Technol. (1)

K. C. Smyth, W. G. Mallard, “Laser-induced ionization and mobility measurements of very small particles in premixed flames at the sooting limit,” Combust. Sci. Technol. 26, 35–41 (1981).
[Crossref]

J. Chem. Phys. (1)

S. N. Lin, G. W. Griffin, E. C. Horning, W. E. Wentworth, “Dependence of polyatomic ion mobilities on size,” J. Chem. Phys. 60, 4994–4999 (1974).
[Crossref]

Proc. Combust. Inst. (4)

K. C. Smyth, P. J. H. Tjossem, “Relative H-atom and C-atom concentration measurements in a laminar, methane/air diffusion flame,” Proc. Combust. Inst. 23, 1829–1837 (1990).
[Crossref]

I. Glassman, “Soot formation in combustion process,” Proc. Combust. Inst. 22, 295–311 (1988).
[Crossref]

H. Richter, J. B. Howard, “Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways,” Proc. Combust. Inst. 26, 565–608 (2000).
[Crossref]

A. D’Alessio, A. Di Lorenzo, A. Borghese, F. Beretta, S. Masi, “Study of soot nucleation zone of rich methane–oxygen flames,” Proc. Combust. Inst. 16, 695–703 (1977).
[Crossref]

Prog. Energy Combust. Sci. (1)

I. M. Kennedy, “Models of soot formation and oxidization,” Prog. Energy Combust. Sci. 23, 95–132 (1997).
[Crossref]

Other (3)

S. L. Manzello, G. W. Mulholland, M. Donovan, W. Tsang, K. Park, M. Zachariah, “On the use of a well stirred reactor to study soot inception,” presented at the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute, Philadelphia, Pa., 20–23 March, 2005.

J. C. Travis, G. C. Turk, Laser-Enhanced Ionization Spectrometry (Wiley, 1996).

R. W. B. Pearse, A. G. Gaydon, The Identification of Molecular Spectra, 4th ed. (Chapman & Hall, 1976).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental apparatus displaying a burner, laser beam alignment, electronics for ionization signal detection, and dual-electrode configurations. HV, high voltage.

Fig. 2
Fig. 2

Typical waveform traced by an oscilloscope: The time scale (x axis) is 20 μs/division and the amplitude scale (y axis) is 10 mV/division. The trigger signal of the pulsed laser is marked by a small arrow. Experimental conditions: ϕ = 2.7; laser energy, 0.5 mJ/pulse; electrode biased at −300 V; single-electrode configuration. One hundred waveforms were averaged to reduce noise.

Fig. 3
Fig. 3

Electron signal (the first peak) as a function of laser energy for both sooting (ϕ = 2.7) and nonsooting (ϕ = 2.3) flame stoichiometry. Single-electrode configuration.

Fig. 4
Fig. 4

Ratio of soot ion arrival time to C2+ ion arrival time as a function of flame height. Experimental conditions: laser energy, 0.7 mJ/pulse; single-electrode configuration; electrode biased at − 700 V.

Fig. 5
Fig. 5

Influence of laser energy and biased electrode voltage on electron signal intensity for three dual-electrode configurations: (a) parallel, (b) inclined, (c) perpendicular. SF, sooting flame; NSF, nonsooting flame.

Fig. 6
Fig. 6

Effect of electrode–laser-beam distance on the peak amplitude and arrival time of ions. Experimental conditions: ϕ = 2.69; laser energy, 0.6 mJ/pulse; electrode biased at −500 V; laser beam 1 cm above burner head.

Fig. 7
Fig. 7

Variation of normalized electron signal intensity as a function of equivalence ratio for parallel and perpendicular electrode configurations. Electrode biased at −700 V.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K = 3 e 16 N 1 m + 1 M 2 π k T 1 Ω D ,

Metrics