Abstract

We have demonstrated that holograms incorporating changes in three-dimensional (3D) scenes can be recalculated in real time to present dynamic updates on information displays. This approach displays 3D information in a compatible format for fast and reliable interpretation of changes in the 3D scenes. The rapid-update algorithm has been demonstrated by real-time computation and transcription of the holograms to our digital micromirror device hologram projection system for visual validation of the reconstruction. The reported algorithm enables full parallax 1024 × 768 pixel holograms of 3D scenes to be updated at a rate of 0.8 s with a 1.8 GHz personal computer. Volumetric information displays that can enhance reliable data assimilation and decrease reaction times for applications such as air-traffic control, cockpit heads-up displays, mission crew stations, and undersea navigation can benefit from this research.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Hopper, “Reality and surreality of 3-D displays: holodeck and beyond,” presented at the Electronic Information Display Conference of the Society for Information Display, London, 21–23 November 2000.
  2. J. R. Thayn, J. Ghrayeb, D. G. Hopper, “3-D display design concept for cockpit and mission crewstation,” in Cockpit Displays VI: Displays for Defense Applications, D. G. Hopper, ed., Proc. SPIE3690, 180–185 (1999).
    [CrossRef]
  3. B. G. Blundell, A. J. Schwarz, D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” IEE Sci. Ed. J. 2, 196–200 (1993).
  4. B. G. Blundell, A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8, 66–75 (2002).
    [CrossRef]
  5. P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
    [CrossRef]
  6. A. J. Schwarz, B. G. Blundell, “Considerations for accurate voxel positioning on a rotating-screen volumetric display system,” IEEE Proc. Optoelectron. 141, 336–344 (1994).
    [CrossRef]
  7. J. J. Lunazzi, “A new possibility of holographic television,” in International Conference on Holography and Optical Information, G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 218–221 (1996).
  8. J. J. Lunazzi, M. Diamand, “Volume images vector display based on a diffractive screen,” Opt. Rev. 6, 513–517 (1999).
    [CrossRef]
  9. Y. Kajiki, H. Yoshikawa, T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circuits Syst. Video Technol. 10, 254–260 (2000).
    [CrossRef]
  10. M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31, 58–62 (1997).
    [CrossRef]
  11. M. L. Huebschman, B. Munjuluri, H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003).
    [CrossRef] [PubMed]
  12. M. L. Huebschman, B. Munjuluri, J. Hunt, H. R. Garner, “Holographic video display using digital micromirrors,” in Practical Holography XIX: Materials and Applications, T. H. Jeong, H. I. Bjelkhagen, eds., Proc. SPIE5742, 1–14 (2005).
    [CrossRef]
  13. L. B. Lesem, P. M. Hirsch, J. A. Jordan, “Computer synthesis of holograms for 3-D display,” Commun. ACM 11, 661–674 (1968).
    [CrossRef]
  14. D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
    [CrossRef] [PubMed]
  15. M. T. Stickland, S. McKay, T. J. Scanlon, “The development of a three dimensional imaging system and its application in computer aided design workstations,” Mechatronics 13, 521–532 (2003).
    [CrossRef]
  16. O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
    [CrossRef] [PubMed]
  17. M. Sutkowski, M. Kujawinska, “Application of liquid crystal devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
    [CrossRef]
  18. T. Kreis, P. Aswendt, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
    [CrossRef]
  19. T. Ito, T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12, 1788–1793 (2004).
    [CrossRef] [PubMed]
  20. W. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42, 1560–1571 (2003).
    [CrossRef]
  21. J. P. Waters, “Three-dimensional Fourier-transform method for synthesizing binary holograms,” J. Opt. Soc. Am. 58, 1284–1288 (1968).
    [CrossRef]
  22. A. W. Lohmann, D. P. Paris, “Binary Fraunhofer holograms generated by computer,” Appl. Opt. 6, 1739–1748 (1967).
    [CrossRef] [PubMed]
  23. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
    [CrossRef] [PubMed]
  24. R. A. Gabel, B. Liu, “Minimization of reconstruction errors with computer generated binary holograms,” Appl. Opt. 9, 1180–1191 (1970).
    [CrossRef] [PubMed]
  25. W. H. Lee, “Sampled Fourier transform hologram generated by computer,” Appl. Opt. 9, 639–643 (1970).
    [CrossRef] [PubMed]
  26. K. Nagashima, “3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 30, 361–366 (1998).
    [CrossRef]
  27. K. Nagashima, “Improvement of reconstruction in 3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 33, 329–334 (2001).
    [CrossRef]
  28. S. Trester, “Computer simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
    [CrossRef]
  29. M. Lucente, “Optimization of hologram computation for real-time display,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 32–43 (1992).
    [CrossRef]
  30. J. L. Juarez-Perez, A. Olivares-Perez, L. R. Berriel-Valdos, “Nonredundant calculations for creating digital fresnel holograms,” Appl. Opt. 36, 7437–7443 (1997).
    [CrossRef]
  31. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imag. 2, 28–34 (1993).
    [CrossRef]
  32. H. Yoshikawa, S. Iwase, T. Oneda, “Fast computation of Fresnel holograms employing difference,” in Practical Holography XIV and Holographic Materials VI, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE3956, 48–55 (2000).
    [CrossRef]
  33. K. Matushima, M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587–6594 (2000).
    [CrossRef]
  34. C. Petz, M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong, S. H. Stevenson, eds., Proc. SPIE5005, 266–275 (2003).
    [CrossRef]
  35. W. Beyer, CRC Standard Mathematical Tables and Formulae (CRC Press, 1991).
  36. R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1941).
  37. D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
    [CrossRef]
  38. D. K. Yang, L. C. Chien, J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phy. Lett. 60, 3102–3104 (1992).
    [CrossRef]
  39. M. L. Huebschman, B. Munjuluri, H. R. Garner, “NU-VIEW: dynamic display of real and virtual 3-D holographic images using TI’s DMD” (19July2005), http://innovation.swmed.edu/research/instrumentation/res_inst_dev3d.html .
  40. M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
    [CrossRef]

2004 (1)

2003 (3)

M. L. Huebschman, B. Munjuluri, H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003).
[CrossRef] [PubMed]

M. T. Stickland, S. McKay, T. J. Scanlon, “The development of a three dimensional imaging system and its application in computer aided design workstations,” Mechatronics 13, 521–532 (2003).
[CrossRef]

W. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42, 1560–1571 (2003).
[CrossRef]

2002 (2)

B. G. Blundell, A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8, 66–75 (2002).
[CrossRef]

O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).
[CrossRef] [PubMed]

2001 (2)

T. Kreis, P. Aswendt, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

K. Nagashima, “Improvement of reconstruction in 3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 33, 329–334 (2001).
[CrossRef]

2000 (4)

S. Trester, “Computer simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
[CrossRef]

M. Sutkowski, M. Kujawinska, “Application of liquid crystal devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Y. Kajiki, H. Yoshikawa, T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circuits Syst. Video Technol. 10, 254–260 (2000).
[CrossRef]

K. Matushima, M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587–6594 (2000).
[CrossRef]

1999 (2)

J. J. Lunazzi, M. Diamand, “Volume images vector display based on a diffractive screen,” Opt. Rev. 6, 513–517 (1999).
[CrossRef]

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

1998 (1)

K. Nagashima, “3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 30, 361–366 (1998).
[CrossRef]

1997 (2)

1996 (1)

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[CrossRef]

1994 (1)

A. J. Schwarz, B. G. Blundell, “Considerations for accurate voxel positioning on a rotating-screen volumetric display system,” IEEE Proc. Optoelectron. 141, 336–344 (1994).
[CrossRef]

1993 (2)

B. G. Blundell, A. J. Schwarz, D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” IEE Sci. Ed. J. 2, 196–200 (1993).

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imag. 2, 28–34 (1993).
[CrossRef]

1992 (1)

D. K. Yang, L. C. Chien, J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phy. Lett. 60, 3102–3104 (1992).
[CrossRef]

1979 (1)

1970 (2)

1968 (2)

J. P. Waters, “Three-dimensional Fourier-transform method for synthesizing binary holograms,” J. Opt. Soc. Am. 58, 1284–1288 (1968).
[CrossRef]

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “Computer synthesis of holograms for 3-D display,” Commun. ACM 11, 661–674 (1968).
[CrossRef]

1967 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Acantilado, N.

P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
[CrossRef]

Aswendt, P.

T. Kreis, P. Aswendt, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Bernardo, L. M.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Berriel-Valdos, L. R.

Bertaux, N.

Beyer, W.

W. Beyer, CRC Standard Mathematical Tables and Formulae (CRC Press, 1991).

Blundell, B. G.

B. G. Blundell, A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8, 66–75 (2002).
[CrossRef]

A. J. Schwarz, B. G. Blundell, “Considerations for accurate voxel positioning on a rotating-screen volumetric display system,” IEEE Proc. Optoelectron. 141, 336–344 (1994).
[CrossRef]

B. G. Blundell, A. J. Schwarz, D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” IEE Sci. Ed. J. 2, 196–200 (1993).

Chien, L. C.

D. K. Yang, L. C. Chien, J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phy. Lett. 60, 3102–3104 (1992).
[CrossRef]

Churchill, R. V.

R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1941).

Dahlke, W.

P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
[CrossRef]

Diamand, M.

J. J. Lunazzi, M. Diamand, “Volume images vector display based on a diffractive screen,” Opt. Rev. 6, 513–517 (1999).
[CrossRef]

Doane, J. W.

D. K. Yang, L. C. Chien, J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phy. Lett. 60, 3102–3104 (1992).
[CrossRef]

Ferreira, C.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Frauel, Y.

Gabel, R. A.

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Garcia, J.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Garner, H. R.

M. L. Huebschman, B. Munjuluri, H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003).
[CrossRef] [PubMed]

M. L. Huebschman, B. Munjuluri, J. Hunt, H. R. Garner, “Holographic video display using digital micromirrors,” in Practical Holography XIX: Materials and Applications, T. H. Jeong, H. I. Bjelkhagen, eds., Proc. SPIE5742, 1–14 (2005).
[CrossRef]

Ghrayeb, J.

J. R. Thayn, J. Ghrayeb, D. G. Hopper, “3-D display design concept for cockpit and mission crewstation,” in Cockpit Displays VI: Displays for Defense Applications, D. G. Hopper, ed., Proc. SPIE3690, 180–185 (1999).
[CrossRef]

Halle, M.

M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31, 58–62 (1997).
[CrossRef]

Hirsch, P. M.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “Computer synthesis of holograms for 3-D display,” Commun. ACM 11, 661–674 (1968).
[CrossRef]

Honda, T.

Y. Kajiki, H. Yoshikawa, T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circuits Syst. Video Technol. 10, 254–260 (2000).
[CrossRef]

Hopper, D. G.

D. G. Hopper, “Reality and surreality of 3-D displays: holodeck and beyond,” presented at the Electronic Information Display Conference of the Society for Information Display, London, 21–23 November 2000.

J. R. Thayn, J. Ghrayeb, D. G. Hopper, “3-D display design concept for cockpit and mission crewstation,” in Cockpit Displays VI: Displays for Defense Applications, D. G. Hopper, ed., Proc. SPIE3690, 180–185 (1999).
[CrossRef]

Horrell, D. K.

B. G. Blundell, A. J. Schwarz, D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” IEE Sci. Ed. J. 2, 196–200 (1993).

Huebschman, M. L.

M. L. Huebschman, B. Munjuluri, H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003).
[CrossRef] [PubMed]

M. L. Huebschman, B. Munjuluri, J. Hunt, H. R. Garner, “Holographic video display using digital micromirrors,” in Practical Holography XIX: Materials and Applications, T. H. Jeong, H. I. Bjelkhagen, eds., Proc. SPIE5742, 1–14 (2005).
[CrossRef]

Hunt, J.

M. L. Huebschman, B. Munjuluri, J. Hunt, H. R. Garner, “Holographic video display using digital micromirrors,” in Practical Holography XIX: Materials and Applications, T. H. Jeong, H. I. Bjelkhagen, eds., Proc. SPIE5742, 1–14 (2005).
[CrossRef]

Ito, T.

Iwase, S.

H. Yoshikawa, S. Iwase, T. Oneda, “Fast computation of Fresnel holograms employing difference,” in Practical Holography XIV and Holographic Materials VI, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE3956, 48–55 (2000).
[CrossRef]

Javidi, B.

Jordan, J. A.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “Computer synthesis of holograms for 3-D display,” Commun. ACM 11, 661–674 (1968).
[CrossRef]

Juarez-Perez, J. L.

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circuits Syst. Video Technol. 10, 254–260 (2000).
[CrossRef]

Kreis, T.

T. Kreis, P. Aswendt, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

Kujawinska, M.

M. Sutkowski, M. Kujawinska, “Application of liquid crystal devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Lasher, M.

P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
[CrossRef]

Lee, W. H.

Lesem, L. B.

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “Computer synthesis of holograms for 3-D display,” Commun. ACM 11, 661–674 (1968).
[CrossRef]

Liu, B.

Lohmann, A. W.

Lucente, M.

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[CrossRef]

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imag. 2, 28–34 (1993).
[CrossRef]

M. Lucente, “Optimization of hologram computation for real-time display,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 32–43 (1992).
[CrossRef]

Lunazzi, J. J.

J. J. Lunazzi, M. Diamand, “Volume images vector display based on a diffractive screen,” Opt. Rev. 6, 513–517 (1999).
[CrossRef]

J. J. Lunazzi, “A new possibility of holographic television,” in International Conference on Holography and Optical Information, G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 218–221 (1996).

Magnor, M.

C. Petz, M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong, S. H. Stevenson, eds., Proc. SPIE5005, 266–275 (2003).
[CrossRef]

Marinho, F.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Mas, D.

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Matoba, O.

Matushima, K.

McDonald, M.

P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
[CrossRef]

McKay, S.

M. T. Stickland, S. McKay, T. J. Scanlon, “The development of a three dimensional imaging system and its application in computer aided design workstations,” Mechatronics 13, 521–532 (2003).
[CrossRef]

Munjuluri, B.

M. L. Huebschman, B. Munjuluri, H. R. Garner, “Dynamic holographic 3-D image projection,” Opt. Express 11, 437–445 (2003).
[CrossRef] [PubMed]

M. L. Huebschman, B. Munjuluri, J. Hunt, H. R. Garner, “Holographic video display using digital micromirrors,” in Practical Holography XIX: Materials and Applications, T. H. Jeong, H. I. Bjelkhagen, eds., Proc. SPIE5742, 1–14 (2005).
[CrossRef]

Nagashima, K.

K. Nagashima, “Improvement of reconstruction in 3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 33, 329–334 (2001).
[CrossRef]

K. Nagashima, “3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 30, 361–366 (1998).
[CrossRef]

Naughton, T. J.

Olivares-Perez, A.

Oneda, T.

H. Yoshikawa, S. Iwase, T. Oneda, “Fast computation of Fresnel holograms employing difference,” in Practical Holography XIV and Holographic Materials VI, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE3956, 48–55 (2000).
[CrossRef]

Paris, D. P.

Petz, C.

C. Petz, M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong, S. H. Stevenson, eds., Proc. SPIE5005, 266–275 (2003).
[CrossRef]

Plesniak, W.

W. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42, 1560–1571 (2003).
[CrossRef]

Scanlon, T. J.

M. T. Stickland, S. McKay, T. J. Scanlon, “The development of a three dimensional imaging system and its application in computer aided design workstations,” Mechatronics 13, 521–532 (2003).
[CrossRef]

Schwarz, A. J.

B. G. Blundell, A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8, 66–75 (2002).
[CrossRef]

A. J. Schwarz, B. G. Blundell, “Considerations for accurate voxel positioning on a rotating-screen volumetric display system,” IEEE Proc. Optoelectron. 141, 336–344 (1994).
[CrossRef]

B. G. Blundell, A. J. Schwarz, D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” IEE Sci. Ed. J. 2, 196–200 (1993).

Shimobaba, T.

Soltan, P.

P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
[CrossRef]

Stickland, M. T.

M. T. Stickland, S. McKay, T. J. Scanlon, “The development of a three dimensional imaging system and its application in computer aided design workstations,” Mechatronics 13, 521–532 (2003).
[CrossRef]

Sutkowski, M.

M. Sutkowski, M. Kujawinska, “Application of liquid crystal devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Takai, M.

Thayn, J. R.

J. R. Thayn, J. Ghrayeb, D. G. Hopper, “3-D display design concept for cockpit and mission crewstation,” in Cockpit Displays VI: Displays for Defense Applications, D. G. Hopper, ed., Proc. SPIE3690, 180–185 (1999).
[CrossRef]

Trester, S.

S. Trester, “Computer simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
[CrossRef]

Waters, J. P.

Yang, D. K.

D. K. Yang, L. C. Chien, J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phy. Lett. 60, 3102–3104 (1992).
[CrossRef]

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circuits Syst. Video Technol. 10, 254–260 (2000).
[CrossRef]

H. Yoshikawa, S. Iwase, T. Oneda, “Fast computation of Fresnel holograms employing difference,” in Practical Holography XIV and Holographic Materials VI, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE3956, 48–55 (2000).
[CrossRef]

Appl. Opt. (7)

Appl. Phy. Lett. (1)

D. K. Yang, L. C. Chien, J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phy. Lett. 60, 3102–3104 (1992).
[CrossRef]

Commun. ACM (1)

L. B. Lesem, P. M. Hirsch, J. A. Jordan, “Computer synthesis of holograms for 3-D display,” Commun. ACM 11, 661–674 (1968).
[CrossRef]

Comput. Graph. (1)

M. Halle, “Autostereoscopic displays and computer graphics,” Comput. Graph. 31, 58–62 (1997).
[CrossRef]

Eur. J. Phys. (1)

S. Trester, “Computer simulated Fresnel holography,” Eur. J. Phys. 21, 317–331 (2000).
[CrossRef]

IBM Syst. J. (1)

M. Lucente, “Computational holographic bandwidth compression,” IBM Syst. J. 35, 349–365 (1996).
[CrossRef]

IEE Sci. Ed. J. (1)

B. G. Blundell, A. J. Schwarz, D. K. Horrell, “Volumetric three-dimensional display systems: their past, present and future,” IEE Sci. Ed. J. 2, 196–200 (1993).

IEEE Proc. Optoelectron. (1)

A. J. Schwarz, B. G. Blundell, “Considerations for accurate voxel positioning on a rotating-screen volumetric display system,” IEEE Proc. Optoelectron. 141, 336–344 (1994).
[CrossRef]

IEEE Trans. Circuits Syst. Video Technol. (1)

Y. Kajiki, H. Yoshikawa, T. Honda, “Autostereoscopic 3-D video display using multiple light beams with scanning,” IEEE Trans. Circuits Syst. Video Technol. 10, 254–260 (2000).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (1)

B. G. Blundell, A. J. Schwarz, “The classification of volumetric display systems: characteristics and predictability of the image space,” IEEE Trans. Vis. Comput. Graph. 8, 66–75 (2002).
[CrossRef]

J. Electron. Imag. (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imag. 2, 28–34 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

Mechatronics (1)

M. T. Stickland, S. McKay, T. J. Scanlon, “The development of a three dimensional imaging system and its application in computer aided design workstations,” Mechatronics 13, 521–532 (2003).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161, 777–778 (1948).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. Mas, J. Garcia, C. Ferreira, L. M. Bernardo, F. Marinho, “Fast algorithms for free-space diffraction patterns calculation,” Opt. Commun. 164, 233–245 (1999).
[CrossRef]

Opt. Eng. (2)

T. Kreis, P. Aswendt, “Hologram reconstruction using a digital micromirror device,” Opt. Eng. 40, 926–933 (2001).
[CrossRef]

W. Plesniak, “Incremental update of computer-generated holograms,” Opt. Eng. 42, 1560–1571 (2003).
[CrossRef]

Opt. Express (2)

Opt. Laser Technol. (2)

K. Nagashima, “3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 30, 361–366 (1998).
[CrossRef]

K. Nagashima, “Improvement of reconstruction in 3D computer-generated holograms using 1D Fourier transform operations,” Opt. Laser Technol. 33, 329–334 (2001).
[CrossRef]

Opt. Lasers Eng. (1)

M. Sutkowski, M. Kujawinska, “Application of liquid crystal devices for optoelectronic reconstruction of digitally stored holograms,” Opt. Lasers Eng. 33, 191–201 (2000).
[CrossRef]

Opt. Rev. (1)

J. J. Lunazzi, M. Diamand, “Volume images vector display based on a diffractive screen,” Opt. Rev. 6, 513–517 (1999).
[CrossRef]

Other (11)

J. J. Lunazzi, “A new possibility of holographic television,” in International Conference on Holography and Optical Information, G. Mu, G. Jin, G. T. Sincerbox, eds., Proc. SPIE2866, 218–221 (1996).

P. Soltan, M. Lasher, W. Dahlke, N. Acantilado, M. McDonald, “Laser projected 3-D volumetric displays,” in Projection Displays II, M. H. Wu, ed., Proc. SPIE2650, 285–295 (1996).
[CrossRef]

D. G. Hopper, “Reality and surreality of 3-D displays: holodeck and beyond,” presented at the Electronic Information Display Conference of the Society for Information Display, London, 21–23 November 2000.

J. R. Thayn, J. Ghrayeb, D. G. Hopper, “3-D display design concept for cockpit and mission crewstation,” in Cockpit Displays VI: Displays for Defense Applications, D. G. Hopper, ed., Proc. SPIE3690, 180–185 (1999).
[CrossRef]

M. L. Huebschman, B. Munjuluri, J. Hunt, H. R. Garner, “Holographic video display using digital micromirrors,” in Practical Holography XIX: Materials and Applications, T. H. Jeong, H. I. Bjelkhagen, eds., Proc. SPIE5742, 1–14 (2005).
[CrossRef]

M. L. Huebschman, B. Munjuluri, H. R. Garner, “NU-VIEW: dynamic display of real and virtual 3-D holographic images using TI’s DMD” (19July2005), http://innovation.swmed.edu/research/instrumentation/res_inst_dev3d.html .

M. Lucente, “Optimization of hologram computation for real-time display,” in Practical Holography VI, S. A. Benton, ed., Proc. SPIE1667, 32–43 (1992).
[CrossRef]

C. Petz, M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” in Practical Holography XVII and Holographic Materials IX, T. H. Jeong, S. H. Stevenson, eds., Proc. SPIE5005, 266–275 (2003).
[CrossRef]

W. Beyer, CRC Standard Mathematical Tables and Formulae (CRC Press, 1991).

R. V. Churchill, Fourier Series and Boundary Value Problems (McGraw-Hill, 1941).

H. Yoshikawa, S. Iwase, T. Oneda, “Fast computation of Fresnel holograms employing difference,” in Practical Holography XIV and Holographic Materials VI, S. A. Benton, S. H. Stevenson, T. J. Trout, eds., Proc. SPIE3956, 48–55 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic illustration of the DMD holographic projection system: DLP, digital light processor; LC, liquid crystal.

Fig. 2
Fig. 2

Display volume to demonstrate real-time update of holograms.

Fig. 3
Fig. 3

(a) Scene 1 in the movie to demonstrate real-time updates. (b) Scene 3 in the movie, looking into the front liquid-crystal plate. (c) Scene 5 in the movie, showing all the letters in focus on the front plate and at a different (x′, y′) location compared with that of Scene 1 in Table 1. (d) Scene 7 in the movie, showing letters S and W in focus on the front plate and the letters U and T focused on the back plate (Table 1). (e) Scene 9 in the movie, showing all four letters focused on the back plate (Table 1). (f) Scene 11 in the movie, showing the letters U and T focused on the front plate and the letters S and W focused on the back plate (Table 1).

Tables (2)

Tables Icon

Table 1 Spatial Coordinates (x′,y′,z′) of Each Letter U, T, S, and W in a Scene with the Origin Located at the Focal Point of a Transform Lensa

Tables Icon

Table 2 Computation Time to Synthesize Holograms of Each Scene in the Demonstrated Movie by Using a Desktop Computera

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U s ( x , y ) = v U ( x , y , z ) [ ( z + f ) 2 + ( x - x ) 2 + ( y - y ) 2 ] 1 / 2 × exp ( - i k { [ ( z + f ) 2 + ( x - x ) 2 + ( y - y ) 2 ] 1 / 2 - x 2 + y 2 2 f } ) d v .
U s ( x , y ) = - V U N ( x , y , z ) sin ( k { [ ( z + f ) 2 + ( x - x ) 2 + ( y - y ) 2 ] 1 / 2 - x 2 + y 2 2 f } ) d v .
U s ( x , y ) = - V U N ( x , y , z ) sin { k [ ( z + f ) - z ( x 2 + y 2 ) 2 f ( z + f ) - ( x x + y y ) ( z + f ) + ( x 2 + y 2 ) 2 ( z + f ) ] } d v .
U s ( x , y ) = - V U N ( x , y , z ) sin { k [ ( - z ( x 2 + y 2 ) 2 f 2 - ( x x + y y ) f ) ] } d v .
U s ( x , y ) = Z 1 Z 2 { sin [ k z ( x 2 + y 2 ) 2 f 2 ] S U N ( x , y , z ) × cos [ k ( x x + y y ) f ] d x d y + cos [ k z ( x 2 + y 2 ) 2 f 2 ] S U N ( x , y , z ) × sin [ k ( x x + y y ) f ] d x d y } d z .
S U N ( x , y , z ) cos [ k ( x x 1 + y y 1 ) f ] d x d y = S U N ( x , y , z ) cos { k [ x ( x + Δ x ) + y ( y + Δ y ) ] f } × d x d y ,
S U N ( x , y , z ) cos [ k ( x x 1 + y y 1 ) f ] d x d y = cos [ k ( x Δ + y Δ y ) f ] S U N ( x , y , z ) × cos [ k ( x x + y y ) f ] d x d y - sin [ k ( x Δ x + y Δ y ) f ] × S U N ( x , y , z ) sin [ k ( x x + y y ) f ] d x d y .
S U N ( x , y , z ) sin [ k ( x x 1 + y y 1 ) f ] d x d y = cos [ k ( x Δ x + y Δ y ) f ] S U N ( x , y , z ) × sin [ k ( x x + y y ) f ] d x d y + sin [ k ( x Δ x + y Δ y ) f ] × S U N ( x , y , z ) cos [ k ( x x + y y ) f ] d x d y .
F C ( x , y ) = S U N ( x , y , z ) cos [ k ( x x + y y ) f ] d x d y ,
F S ( x , y ) = S U N ( x , y , z ) sin [ k ( x x + y y ) f ] d x d y .
O ( x , y ) = [ - k ( x 2 + y 2 ) 2 f ] ,
F C ( x , y ) = S U N ( x , y , z ) cos [ k ( x x + y y ) f - k ( x 2 + y 2 ) 2 f ] d x d y ,
F S ( x , y ) = S U N ( x , y , z ) sin [ k ( x x + y y ) f - k ( x 2 + y 2 ) 2 f ] d x d y .

Metrics