Abstract

By the use of a thin highly oriented pyrolytic graphite crystal (HOPG) bent to a high-performance ellipsoidal shape it was possible to focus monochromatic x-rays of 4.5 keV photon energy with an efficiency of 0.0033, which is 30 times larger than for previously used bent crystals. Isotropic Ti Kα radiation of a 150 μm source was focused onto a 450 μm spot. The size of the focal spot can be explained by broadening due to the mosaic crystal rocking curve. The rocking curve width (FWHM) of the thin graphite foil was determined to 0.11°. The estimated temporal broadening of an ultrashort Kα pulse by the crystal is not larger than 300 fs. These properties make the x-ray optic very attractive for ultrafast time-resolved x-ray measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Berreman, J. Stamatoff, S. J. Kennedy, “Doubly curved crystal point-focusing x-ray monochromators: geometrical and practical optics,” Appl. Opt. 16, 2081–2085 (1977).
    [CrossRef] [PubMed]
  2. E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991).
    [CrossRef]
  3. T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
    [CrossRef]
  4. I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
    [CrossRef]
  5. I. Uschmann, K. Fujita, I. Niki, R. Butzbach, H. Nishimura, J. Funakura, M. Nakai, E. Förster, K. Mima, “Time-resolved ten channel monochromatic imaging of inertial confinement fusion plasmas,” Appl. Opt. 39, 5865–5871 (2000).
    [CrossRef]
  6. Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
    [CrossRef]
  7. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
    [CrossRef] [PubMed]
  8. T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
    [CrossRef]
  9. K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
    [CrossRef] [PubMed]
  10. A. W. Moore, “Highly oriented pyrolytic graphite,” Chem. Phys. Carbon 11, 69–187 (1973).
  11. A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
    [CrossRef]
  12. I. G. Grigorieva, A. A. Antonov, “HOPG as powerful x-ray optics,” X-Ray Spectrom. 32, 64–68 (2003).
    [CrossRef]
  13. M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
    [CrossRef]
  14. B. Beckhoff, “Röntgenfokussierung mit stark gekrümmten HOPG Kristallen in der energiedispersiven Röntgenfluoreszenzanalyse,” Ph. D. thesis (Universität Bremen, 1995).
  15. J. V. Gilfrich, D. B. Brown, P. G. Burkhalter, “Integral reflection coefficient of X-ray spectrometer crystals,” Appl. Spectrosc. 29, 322–326 (1975).
    [CrossRef]
  16. O. Brümmer, H. Stephanik, Dynamische Interferenztheorie (Akademische Verlagsgesellschaft Geest & Portig K.-G.Leipzig, 1976).
  17. M. Dirksmoeller, “Einzel und Doppelkristallanordnungen zur hochauflösenden röntgenoptischen Abbildung,” Ph.D. thesis (Friedrich-Schiller-Universität Jena, 1995).
  18. D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
    [CrossRef]

2003 (3)

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

I. G. Grigorieva, A. A. Antonov, “HOPG as powerful x-ray optics,” X-Ray Spectrom. 32, 64–68 (2003).
[CrossRef]

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

2001 (2)

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

2000 (2)

I. Uschmann, K. Fujita, I. Niki, R. Butzbach, H. Nishimura, J. Funakura, M. Nakai, E. Förster, K. Mima, “Time-resolved ten channel monochromatic imaging of inertial confinement fusion plasmas,” Appl. Opt. 39, 5865–5871 (2000).
[CrossRef]

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

1999 (2)

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

1997 (1)

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

1991 (2)

E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991).
[CrossRef]

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

1977 (1)

1975 (1)

1973 (1)

A. W. Moore, “Highly oriented pyrolytic graphite,” Chem. Phys. Carbon 11, 69–187 (1973).

Albouy, P.-A.

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Antonetti, A.

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Antonov, A. A.

I. G. Grigorieva, A. A. Antonov, “HOPG as powerful x-ray optics,” X-Ray Spectrom. 32, 64–68 (2003).
[CrossRef]

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

Audebert, P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Balcou, Ph.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Baryshev, V. B.

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

Beckhoff, B.

B. Beckhoff, “Röntgenfokussierung mit stark gekrümmten HOPG Kristallen in der energiedispersiven Röntgenfluoreszenzanalyse,” Ph. D. thesis (Universität Bremen, 1995).

Berreman, D. W.

Blum, C.

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

Boschetto, D.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

Brown, D. B.

Brümmer, O.

O. Brümmer, H. Stephanik, Dynamische Interferenztheorie (Akademische Verlagsgesellschaft Geest & Portig K.-G.Leipzig, 1976).

Burkhalter, P. G.

Butzbach, R.

Dirksmoeller, M.

M. Dirksmoeller, “Einzel und Doppelkristallanordnungen zur hochauflösenden röntgenoptischen Abbildung,” Ph.D. thesis (Friedrich-Schiller-Universität Jena, 1995).

Fantini, A.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Feurer, T.

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Förster, E.

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

I. Uschmann, K. Fujita, I. Niki, R. Butzbach, H. Nishimura, J. Funakura, M. Nakai, E. Förster, K. Mima, “Time-resolved ten channel monochromatic imaging of inertial confinement fusion plasmas,” Appl. Opt. 39, 5865–5871 (2000).
[CrossRef]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991).
[CrossRef]

Fourmaux, S.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Fujita, K.

Funakura, J.

Gäbel, K.

E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991).
[CrossRef]

Gambaccini, M.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Gauthier, J. C.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Gauthier, J.-C.

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Geindre, J. P.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Geindre, J.-P.

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Gibbon, P.

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Gilfrich, J. V.

Grigorieva, I. G.

I. G. Grigorieva, A. A. Antonov, “HOPG as powerful x-ray optics,” X-Ray Spectrom. 32, 64–68 (2003).
[CrossRef]

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

Grillon, G.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Horn van Hoegen, M.

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

Hulin, D.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Jenke, G.

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Kammler, M.

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

Kennedy, S. J.

Klöpfel, D.

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Kulipanov, G. N.

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

Martin, J.-L.

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Mima, K.

Missalla, T.

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Moore, A. W.

A. W. Moore, “Highly oriented pyrolytic graphite,” Chem. Phys. Carbon 11, 69–187 (1973).

Morak, A.

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

Nakai, M.

Niki, I.

Nishimura, H.

Ohler, M.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Pareschi, G.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Perez, J.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

Reich, Ch.

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

Rischel, C.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Rischel, Ch.

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Rousse, A.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

Sanchez del Rio, M.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Sauerbrey, R.

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

Sebban, S.

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

Shchipkov, N. N.

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

Sokolowski-Tinten, K.

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

Stamatoff, J.

Stephanik, H.

O. Brümmer, H. Stephanik, Dynamische Interferenztheorie (Akademische Verlagsgesellschaft Geest & Portig K.-G.Leipzig, 1976).

Taibi, A.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Tuffannelli, A.

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

Uschmann, I.

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

I. Uschmann, K. Fujita, I. Niki, R. Butzbach, H. Nishimura, J. Funakura, M. Nakai, E. Förster, K. Mima, “Time-resolved ten channel monochromatic imaging of inertial confinement fusion plasmas,” Appl. Opt. 39, 5865–5871 (2000).
[CrossRef]

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991).
[CrossRef]

von der Linde, D.

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Ziener, Ch.

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Chem. Phys. Carbon (1)

A. W. Moore, “Highly oriented pyrolytic graphite,” Chem. Phys. Carbon 11, 69–187 (1973).

J. Appl. Cryst. (2)

M. Ohler, M. Sanchez del Rio, A. Tuffannelli, M. Gambaccini, A. Taibi, A. Fantini, G. Pareschi, “X-ray topographic determination of the granular structure in a graphite mosaic crystal: a three-dimensional reconstruction,” J. Appl. Cryst. 33, 1023–1030 (2000), and references therein.
[CrossRef]

D. Boschetto, C. Rischel, I. Uschmann, J. Perez, S. Fourmaux, D. Hulin, E. Förster, A. Rousse, “Large-angle convergent-beam set up for femtosecond x-ray crystallography,” J. Appl. Cryst. 36, 348–349 (2003).
[CrossRef]

Laser Part. Beams (2)

I. Uschmann, P. Gibbon, D. Klöpfel, T. Feurer, E. Förster, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Rousse, C. Rischel, “X-ray emission produced by hot electrons from fs-laser produced plasma: diagnostics and application,” Laser Part. Beams 17, 671–680 (1999).
[CrossRef]

E. Förster, I. Uschmann, K. Gäbel, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 56, 135–148 (1991).
[CrossRef]

Nature (3)

Ch. Rischel, A. Rousse, I. Uschmann, P.-A. Albouy, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Förster, J.-L. Martin, A. Antonetti, “Femtosecond time-resolved X-ray diffraction on laser-heated organic films,” Nature 390, 490–492 (1997).
[CrossRef]

A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J. P. Geindre, P. Audebert, J. C. Gauthier, D. Hulin, “Non-thermal melting in semiconductors measured at femtosecond resolution,” Nature 410, 65–68 (2001).
[CrossRef] [PubMed]

K. Sokolowski-Tinten, C. Blum, M. Kammler, M. Horn van Hoegen, D. von der Linde, I. Uschmann, E. Förster, “Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit,” Nature 422, 287–289 (2003).
[CrossRef] [PubMed]

Nucl. Instrum. Methods Phys. Rev. A (1)

A. A. Antonov, V. B. Baryshev, I. G. Grigorieva, G. N. Kulipanov, N. N. Shchipkov, “Focusing shaped pyrographice monochromators in synchrotron radiation experiments,” Nucl. Instrum. Methods Phys. Rev. A 308, 442–446 (1991).
[CrossRef]

Phys. Rev. E (1)

T. Feurer, A. Morak, I. Uschmann, Ch. Ziener, Ch. Reich, P. Gibbon, E. Förster, R. Sauerbrey, “Femtosecond silicon Kα pulses from laser produced plasmas,” Phys. Rev. E 65, 016412 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

T. Missalla, I. Uschmann, E. Förster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

X-Ray Spectrom. (1)

I. G. Grigorieva, A. A. Antonov, “HOPG as powerful x-ray optics,” X-Ray Spectrom. 32, 64–68 (2003).
[CrossRef]

Other (3)

B. Beckhoff, “Röntgenfokussierung mit stark gekrümmten HOPG Kristallen in der energiedispersiven Röntgenfluoreszenzanalyse,” Ph. D. thesis (Universität Bremen, 1995).

O. Brümmer, H. Stephanik, Dynamische Interferenztheorie (Akademische Verlagsgesellschaft Geest & Portig K.-G.Leipzig, 1976).

M. Dirksmoeller, “Einzel und Doppelkristallanordnungen zur hochauflösenden röntgenoptischen Abbildung,” Ph.D. thesis (Friedrich-Schiller-Universität Jena, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the ellipsoidal graphite crystal. The crystal is rotationallagy symmetric about the axis. a = 75 mm, b = 30.730 mm, f = 68.415 mm.

Fig. 2
Fig. 2

Measured rocking curves by using (n, −n) double-crystal diffractometer (a) of two flat quartz 10 1 ¯ 1 ¯ crystals compared with the curve predicted by the dynamical theory, (b) of quartz 10 1 ¯ 1 ¯ compared with 8 μm thick and 100 μm thick HOPG crystal, (c) of 8 μm thick HOPG crystal using different vertical crystal sizes, and (d) using different horizontal crystal positions xh, graphite 002 reflection, Ti Kα radiation.

Fig. 3
Fig. 3

Double-crystal topographs of a flat 8 μm thick HOPG crystal at three positions of the rocking curve, 002 reflection, Ti Kα.

Fig. 4
Fig. 4

X-ray optical test scheme of the ellipsoidal HOPG crystal using Ti Kα radiation.

Fig. 5
Fig. 5

Variation of the focused Ti Kα radiation by translation of the ellipsoid HOPG crystal along the ellipsoid rotation axis with respect to the Ti Kα source, compared with ray-tracing calculation.

Fig. 6
Fig. 6

Intensity distribution of Ti Kα radiation focused by the ellipsoidally bent HOPG for different distances between the crystal and the film (negative positions are closer to the ellipsoid center, primary source x-ray tungsten tube, 10 kV, 30 mA).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ Θ = ( tan Θ 1 - tan Θ 2 ) × Δ λ λ .
I I 0 = exp ( - 2 μ t sin θ ) = t = 40 μ m 0.8.
Δ t = 2 t sin θ c = 100 fs .
Δ t = a tan θ Δ θ roc c = 196 fs .

Metrics