Abstract

Nowadays the transmission powers in optical telecommunication networks are often hundreds of milliwatts. Such high power levels are known to cause several nonlinear effects, thus affecting data transfer. Therefore, accurate measurements of such high power levels are required. The general issues that are to be considered when one is realizing a scale for high fiber optic power are discussed. The scales of the national standards laboratories in Finland, Sweden, and Denmark are described, and the results of a trilateral comparison of these scales are presented. The power range of the comparison was 1–200 mW. The results show that the stated measurement uncertainties of the three laboratories (1.3%–2.9%, k = 23 are applicable over this power range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
    [CrossRef]
  2. R. Gallawa, X. Li, “Calibration of optical fiber power meters: the effect of connectors,” Appl. Opt. 26, 1170–1174 (1987).
    [CrossRef] [PubMed]
  3. D. H. Nettleton, “Application of absolute radiometry to the measurement of optical power in fibre optic systems,” Inst. Phys. Conf. Ser. 92, 93–97 (1989).
  4. P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
    [CrossRef]
  5. J. Lehman, X. Li, “Transfer standard for optical fiber power metrology,” Appl. Opt. 38, 7164–7166 (1999).
    [CrossRef]
  6. L. Boivin, “Properties of sphere radiometers suitable for high-accuracy cryogenic-radiometer-based calibrations in the near-infrared,” Metrologia 37, 273–278 (2000).
    [CrossRef]
  7. J. Lehman, C. Cromer, “Optical trap detector for calibration of optical fiber powermeters: coupling efficiency,” Appl. Opt. 41, 6531–6536 (2002).
    [CrossRef] [PubMed]
  8. J. Envall, P. Kärhä, E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41, 353–358 (2004).
    [CrossRef]
  9. A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
    [CrossRef]

2005

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

2004

J. Envall, P. Kärhä, E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41, 353–358 (2004).
[CrossRef]

2002

2000

L. Boivin, “Properties of sphere radiometers suitable for high-accuracy cryogenic-radiometer-based calibrations in the near-infrared,” Metrologia 37, 273–278 (2000).
[CrossRef]

1999

J. Lehman, X. Li, “Transfer standard for optical fiber power metrology,” Appl. Opt. 38, 7164–7166 (1999).
[CrossRef]

A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
[CrossRef]

1998

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

1989

D. H. Nettleton, “Application of absolute radiometry to the measurement of optical power in fibre optic systems,” Inst. Phys. Conf. Ser. 92, 93–97 (1989).

1987

Boivin, L.

L. Boivin, “Properties of sphere radiometers suitable for high-accuracy cryogenic-radiometer-based calibrations in the near-infrared,” Metrologia 37, 273–278 (2000).
[CrossRef]

Campos, J.

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

Corredera, P.

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

Corróns, A.

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

Cromer, C.

Envall, J.

J. Envall, P. Kärhä, E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41, 353–358 (2004).
[CrossRef]

Fontecha, J. L.

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

Gallawa, R.

Haapalinna, A.

A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
[CrossRef]

Hernanz, M. L.

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

Ikonen, E.

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

J. Envall, P. Kärhä, E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41, 353–358 (2004).
[CrossRef]

A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
[CrossRef]

Kärhä, P.

J. Envall, P. Kärhä, E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41, 353–358 (2004).
[CrossRef]

A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
[CrossRef]

Kübarsepp, T.

A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
[CrossRef]

Lamminpää, A.

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

Lehman, J.

Li, X.

Ludvigsen, H.

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

Marttila, P.

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

Nettleton, D. H.

D. H. Nettleton, “Application of absolute radiometry to the measurement of optical power in fibre optic systems,” Inst. Phys. Conf. Ser. 92, 93–97 (1989).

Niemi, T.

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

Pons, A.

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

Appl. Opt.

Inst. Phys. Conf. Ser.

D. H. Nettleton, “Application of absolute radiometry to the measurement of optical power in fibre optic systems,” Inst. Phys. Conf. Ser. 92, 93–97 (1989).

Meas. Sci. Technol.

A. Haapalinna, T. Kübarsepp, P. Kärhä, E. Ikonen, “Measurement of the absolute linearity of photodetectors with a diode laser,” Meas. Sci. Technol. 10, 1075–1078 (1999).
[CrossRef]

Metrologia

P. Corredera, J. Campos, M. L. Hernanz, J. L. Fontecha, A. Pons, A. Corróns, “Calibration of near-infrared transfer standards at optical-fibre communication wavelengths by direct comparison with a cryogenic radiometer,” Metrologia 35, 273–277 (1998).
[CrossRef]

L. Boivin, “Properties of sphere radiometers suitable for high-accuracy cryogenic-radiometer-based calibrations in the near-infrared,” Metrologia 37, 273–278 (2000).
[CrossRef]

J. Envall, P. Kärhä, E. Ikonen, “Measurements of fibre optic power using photodiodes with and without an integrating sphere,” Metrologia 41, 353–358 (2004).
[CrossRef]

Opt. Fiber Technol.

A. Lamminpää, T. Niemi, E. Ikonen, P. Marttila, H. Ludvigsen, “Effects of dispersion on nonlinearity measurement of optical fibers,” Opt. Fiber Technol. 11, 278–285 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Demonstration of the difference in measurement geometry between (a) fiber measurements and (b) measurements with open collimated laser beam.

Fig. 2
Fig. 2

Structure of the TKK integrating sphere detector.8

Fig. 3
Fig. 3

Measured ASE spectrum of the EDFA for laser input power of 0 dBm at a wavelength of 1550.0 nm. Three output power levels are shown. The values that could not be recorded because of noise were set to a level of 5 × 10−6. The shape of the peaks at the laser wavelength is due to the bandwidth of the spectrum analyzer.

Fig. 4
Fig. 4

Results of the low power comparison given as the relative difference from the average power measured by the three laboratories: +, SP; δ, TKK photodiode; ○, TKK integrating sphere; ×, DFM.

Fig. 5
Fig. 5

Results of the high power comparison given as the relative difference from the average power measured by the three laboratories: +, SP; ○, TKK integrating sphere; ×, DFM large sphere; ∇, DFM small sphere.

Metrics