Abstract

An optical limiter was designed and fabricated. The device consists of an organic solution sandwiched between a polymer slab and a transparent relief polymer grating with a triangular groove. At low power the device has a high transmittance because the refractive index of the solution is matched with those of the slab and the grating materials and because the grating does not diffract. However, high power makes the organic solution thermally vaporize and makes the indices of the solution, slab, and grating materials become mismatched, which causes the grating to appear. The incident light is strongly absorbed, scattered, and self-defocused by the organic solution, and the grating suppresses the zero-order diffraction. Thus the transmitted light energy becomes lower than the damage threshold of human eyes or optical sensors. The device is an effective protection for human eyes or optical sensors against broadband pulsed-laser damage.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
    [CrossRef]
  2. B. L. Justus, A. L. Huston, A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
    [CrossRef]
  3. D. Vincent, “Optical limiting threshold in carbon suspensions and reverse saturable absorber materials,” Appl. Opt. 40, 6646–6653 (2001).
    [CrossRef]
  4. L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
    [CrossRef]
  5. I. C. Khoo, M. V. Wood, B. D. Guenther, M.-Y. Shih, P. H. Chen, “Nonlinear absorption and optical limiting of laser pulses in a liquid-cored fiber array,” J. Opt. Soc. Am. B 15, 1533–1540 (1998).
    [CrossRef]
  6. L. W. Tutt, T. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
    [CrossRef]
  7. A. A. Said, M. Sheik-Bahae, D. J. Hagan, T. H. Wei, J. Wang, J. Young, E. W. Van Stryland, “Determination of bound-electronic and free-carrier nonlinearities in ZnSe, GaAs, CdTe, and ZnTe,” J. Opt. Soc. Am. B 9, 405–414 (1992).
    [CrossRef]
  8. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  9. K. M. Nashold, D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  10. V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
    [CrossRef]
  11. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  12. L. Z. Cai, C. F. Li, J. H. Zhao, H. K. Liu, “On-axis beam extinction through diffraction design and analysis,” Appl. Opt. 38, 56–66 (1999).
    [CrossRef]
  13. M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
    [CrossRef]
  14. H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
    [CrossRef]
  15. Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
    [CrossRef]
  16. R. C. Hollins, “Materials for optical limiters,” Current Opin. Solid State Mater. Sci. 4, 189–196 (1999).
    [CrossRef]

2004

I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
[CrossRef]

2003

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

2002

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

2001

D. Vincent, “Optical limiting threshold in carbon suspensions and reverse saturable absorber materials,” Appl. Opt. 40, 6646–6653 (2001).
[CrossRef]

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

2000

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

1999

L. Z. Cai, C. F. Li, J. H. Zhao, H. K. Liu, “On-axis beam extinction through diffraction design and analysis,” Appl. Opt. 38, 56–66 (1999).
[CrossRef]

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

R. C. Hollins, “Materials for optical limiters,” Current Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

1998

1995

1993

B. L. Justus, A. L. Huston, A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

L. W. Tutt, T. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

1992

Anglaret, E.

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

Barthel, M.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Belousova, I. M.

I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
[CrossRef]

Boggess, T.

L. W. Tutt, T. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Bourdon, P.

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cai, L. Z.

Campillo, A. J.

B. L. Justus, A. L. Huston, A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Chang, Q.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Chen, P. H.

Fang, G. Y.

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Flom, S. R.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Flytzanis, C.

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Guenther, B. D.

Hache, F.

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Hagan, D. J.

Hanack, M.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

He, C. Y.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Hollins, R. C.

R. C. Hollins, “Materials for optical limiters,” Current Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

Hu, Q. M.

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Huston, A. L.

B. L. Justus, A. L. Huston, A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Academic, 1982).

Joudrier, V.

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Justus, B. L.

B. L. Justus, A. L. Huston, A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Khoo, I. C.

Lancon, P.

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

Li, C. F.

L. Z. Cai, C. F. Li, J. H. Zhao, H. K. Liu, “On-axis beam extinction through diffraction design and analysis,” Appl. Opt. 38, 56–66 (1999).
[CrossRef]

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Liu, H. K.

Liu, S. T.

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Mironova, N. G.

I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
[CrossRef]

Nashold, K. M.

Pong, R. G. S.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Riehl, D.

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

Said, A. A.

Schneider, T.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Scobelev, A. G.

I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
[CrossRef]

Sheik-Bahae, M.

Shih, M.-Y.

Shirk, J. S.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Song, L. F.

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Song, Y. L.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Tutt, L. W.

L. W. Tutt, T. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Van Stryland, E. W.

Vincent, D.

Vivien, L.

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

Walter, D. P.

Wang, J.

Wang, Y. X.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Wei, T. H.

Wood, M. V.

Wu, Y. Q.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Ye, H. A.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Young, J.

Yur’ev, M. S.

I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
[CrossRef]

Zhao, J. H.

Zhou, J. H.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Zhu, Y. H.

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

Zuo, X.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

V. Joudrier, P. Bourdon, F. Hache, C. Flytzanis, “Characterization of nonlinear scattering in colloidal suspensions of silica particles,” Appl. Phys. B 70, 105–109 (2000).
[CrossRef]

Appl. Phys. Lett.

Y. L. Song, G. Y. Fang, Y. X. Wang, S. T. Liu, C. F. Li, L. F. Song, Y. H. Zhu, Q. M. Hu, “Excited-state absorption and optical-limiting properties of organometallic fullerene-C60 derivatives,” Appl. Phys. Lett. 74, 332–334 (1999).
[CrossRef]

B. L. Justus, A. L. Huston, A. J. Campillo, “Broadband thermal optical limiter,” Appl. Phys. Lett. 63, 1483–1485 (1993).
[CrossRef]

Carbon

L. Vivien, P. Lancon, D. Riehl, F. Hache, E. Anglaret, “Carbon nanotubes for optical limiting,” Carbon 40, 1789–1797 (2002).
[CrossRef]

Coord. Chem. Rev.

M. Hanack, T. Schneider, M. Barthel, J. S. Shirk, S. R. Flom, R. G. S. Pong, “Indium phthalocyanines and naphthalocyanines for optical limiting,” Coord. Chem. Rev. 219–221, 235–258 (2001).
[CrossRef]

Current Opin. Solid State Mater. Sci.

R. C. Hollins, “Materials for optical limiters,” Current Opin. Solid State Mater. Sci. 4, 189–196 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Mater. Lett.

H. A. Ye, Q. Chang, Y. Q. Wu, C. Y. He, X. Zuo, J. H. Zhou, Y. X. Wang, Y. L. Song, “Optical limiting of metallic naphthalocyanine compound,” Mater. Lett. 57, 3302–3304 (2003).
[CrossRef]

Opt. Commun.

I. M. Belousova, N. G. Mironova, A. G. Scobelev, M. S. Yur’ev, “The investigation of nonlinear optical limiting by aqueous suspensions of carbon nanoparticles,” Opt. Commun. 235, 445–452 (2004).
[CrossRef]

Prog. Quantum Electron.

L. W. Tutt, T. Boggess, “A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors, and other materials,” Prog. Quantum Electron. 17, 299–338 (1993).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, 1992).

M. C. Hutley, Diffraction Gratings (Academic, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The polymer grating with a triangular groove structure: d, the period of the grating; h, the peak groove height of the grating. The arrow above the grating illustrates the incident beam, and the arrows below the grating illustrate the diffracted beams.

Fig. 2
Fig. 2

Triangular groove grating transmittance of the 0-order diffraction beam in the visible spectrum.

Fig. 3
Fig. 3

Illustration of the optical device at two different input fluences: (a) with low input fluence the indices are matched and so the grating disappears; (b) with high input fluence a bubble is created because of the thermal effect, the indices are mismatched, and so the grating is activated.

Fig. 4
Fig. 4

Experimental setup for testing the limiting properties of the device. The light source is a 532 nm Nd:YAG pulsed laser. The pulse width is 5 ns.

Fig. 5
Fig. 5

Optical-limiting behavior of our device, measured at 532 nm: (a) output energy versus input energy and (b) transmittance versus input energy fluence.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

sin θ m = m λ 0 / n d ,
θ ± 1 arcsin ( ± 1 / n ) ,
T 0 = sin 2 ( k π λ 0 / λ ) ( k π λ 0 / λ ) 2 ,

Metrics