Abstract

Mechanically tuned external-cavity lasers in which the cavity and the mode filter are tuned synchronously are well known and commercially available. The synchronicity allows phase-continuous tuning to be obtained. Acousto-optic tuning has potential advantages in terms of speed, stability, and precision, but a method for synchronous tuning is required. We propose such a method and describe its experimental verification.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  2. G. Coquin, K.-W. Cheung, M. M. Choy, “Single- and multiple-wavelength operation of acoustooptically tuned semiconductor lasers at 1.3 μm,” IEEE J. Quantum Electron. 25, 1575–1579 (1989).
    [CrossRef]
  3. A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity laser diodes with frequency-shifted feedback,” Opt. Commun. 116, 87–93 (1995).
    [CrossRef]
  4. D. C. Thompson, G. E. Busch, T. J. Zaugg, C. W. Wilson, “Rapid acousto-optic tuning of CO2 lasers,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series, (Optical Society of America, 1996), pp. 241–242.
  5. D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).
  6. P. McNicholl, H. J. Metcalf, “Synchronous cavity mode and feedback wavelength scanning in dye laser oscillators with gratings,” Appl. Opt. 24, 2757–2761 (1985).
    [CrossRef] [PubMed]
  7. See, for example, A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003), Sects. 9.2 and 9.3.
  8. The acousto-optic deflectors were designed and fabricated by Crystal Technology Inc., www.crystaltechnology.com .

1995 (1)

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity laser diodes with frequency-shifted feedback,” Opt. Commun. 116, 87–93 (1995).
[CrossRef]

1989 (1)

G. Coquin, K.-W. Cheung, M. M. Choy, “Single- and multiple-wavelength operation of acoustooptically tuned semiconductor lasers at 1.3 μm,” IEEE J. Quantum Electron. 25, 1575–1579 (1989).
[CrossRef]

1985 (1)

1978 (1)

Busch, G. E.

D. C. Thompson, G. E. Busch, T. J. Zaugg, C. W. Wilson, “Rapid acousto-optic tuning of CO2 lasers,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series, (Optical Society of America, 1996), pp. 241–242.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

Cheung, K.-W.

G. Coquin, K.-W. Cheung, M. M. Choy, “Single- and multiple-wavelength operation of acoustooptically tuned semiconductor lasers at 1.3 μm,” IEEE J. Quantum Electron. 25, 1575–1579 (1989).
[CrossRef]

Choy, M. M.

G. Coquin, K.-W. Cheung, M. M. Choy, “Single- and multiple-wavelength operation of acoustooptically tuned semiconductor lasers at 1.3 μm,” IEEE J. Quantum Electron. 25, 1575–1579 (1989).
[CrossRef]

Coquin, G.

G. Coquin, K.-W. Cheung, M. M. Choy, “Single- and multiple-wavelength operation of acoustooptically tuned semiconductor lasers at 1.3 μm,” IEEE J. Quantum Electron. 25, 1575–1579 (1989).
[CrossRef]

Ferguson, A. I.

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity laser diodes with frequency-shifted feedback,” Opt. Commun. 116, 87–93 (1995).
[CrossRef]

Kane, D. M.

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity laser diodes with frequency-shifted feedback,” Opt. Commun. 116, 87–93 (1995).
[CrossRef]

Littman, M. G.

McNicholl, P.

Metcalf, H. J.

Remelius, D. K.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

Shimada, T.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

Strauss, C. E. M.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

Thompson, D. C.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

D. C. Thompson, G. E. Busch, T. J. Zaugg, C. W. Wilson, “Rapid acousto-optic tuning of CO2 lasers,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series, (Optical Society of America, 1996), pp. 241–242.

Willis, A. P.

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity laser diodes with frequency-shifted feedback,” Opt. Commun. 116, 87–93 (1995).
[CrossRef]

Wilson, C. W.

D. C. Thompson, G. E. Busch, T. J. Zaugg, C. W. Wilson, “Rapid acousto-optic tuning of CO2 lasers,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series, (Optical Society of America, 1996), pp. 241–242.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

Yariv, A.

See, for example, A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003), Sects. 9.2 and 9.3.

Yeh, P.

See, for example, A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003), Sects. 9.2 and 9.3.

Zaugg, T. J.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

D. C. Thompson, G. E. Busch, T. J. Zaugg, C. W. Wilson, “Rapid acousto-optic tuning of CO2 lasers,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series, (Optical Society of America, 1996), pp. 241–242.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

G. Coquin, K.-W. Cheung, M. M. Choy, “Single- and multiple-wavelength operation of acoustooptically tuned semiconductor lasers at 1.3 μm,” IEEE J. Quantum Electron. 25, 1575–1579 (1989).
[CrossRef]

Opt. Commun. (1)

A. P. Willis, A. I. Ferguson, D. M. Kane, “External cavity laser diodes with frequency-shifted feedback,” Opt. Commun. 116, 87–93 (1995).
[CrossRef]

Other (4)

D. C. Thompson, G. E. Busch, T. J. Zaugg, C. W. Wilson, “Rapid acousto-optic tuning of CO2 lasers,” in Conference on Lasers and Electro-Optics, Vol. 9 of 1996 OSA Technical Digest Series, (Optical Society of America, 1996), pp. 241–242.

D. C. Thompson, G. E. Busch, C. W. Wilson, T. J. Zaugg, C. E. M. Strauss, D. K. Remelius, T. Shimada, “Rapid acoustooptic tuner and phase shifter,” U.S. patent6,031,852 (29February2000).

See, for example, A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, 2003), Sects. 9.2 and 9.3.

The acousto-optic deflectors were designed and fabricated by Crystal Technology Inc., www.crystaltechnology.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an acousto-optically tuned external-cavity laser. The box labeled S.O.A. represents the gain medium (semiconductor optical amplifier).

Fig. 2
Fig. 2

Cavity used to demonstrate synchronous tuning. The purpose of the half-wave plates is to rotate the beam polarization by 90°, allowing the device to be assembled on a single plane.

Fig. 3
Fig. 3

Measurements showing the effect of delay time on tuning characteristics. The delay times in units of microseconds are shown in the boxes at the left of each plot. The acoustic frequency applied to the acousto-optic deflectors increased by ~700 Hz for each increment in measurement number. Note that small offsets were applied to the wavelength coordinates to separate the plots for clarity.

Fig. 4
Fig. 4

Cavity design with improved mode selectivity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ f = T ν ˙ / 2.
ν ˙ = f ˙ ( d ν / d f ) .
Δ f f ˙ = T 2 ( d ν d f ) .
Δ τ = T 2 ( d ν d f ) .

Metrics