Abstract

We present a solid polymer dye laser based on a single-mode planar waveguide. The all-polymer device is self-contained in the photodefinable polymer SU-8 and may therefore easily be placed on any substrate and be integrated with polymer-based systems. We use as the active medium for the laser the commercially available laser dye Rhodamine 6G, which is incorporated into the SU-8 polymer matrix. The single-mode slab waveguide is formed by three-step spin-coating deposition: a buffer layer of undoped SU-8, a core layer of SU-8 doped with Rhodamine, and a cladding layer of undoped SU-8.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. P. Schäfer, Dye Lasers (Springer-Verlag, 1973).
  2. B. H. Soffer, B. B. McFarland, “Continously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
    [CrossRef]
  3. O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1967).
    [CrossRef]
  4. S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
    [CrossRef]
  5. C. Hu, S. Kim, “Thin-film dye laser with etched cavity,” Appl. Phys. Lett. 29, 582–585 (1976).
    [CrossRef]
  6. Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).
  7. Y. Oki, T. Yoshiura, Y. Chisaki, M. Maeda, “Fabrication of a distributed-feedback dye laser with a grating structure in its plastic waveguide,” Appl. Opt. 41, 5030–5035 (2002).
    [CrossRef] [PubMed]
  8. E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3, 42N–52N (2003).
  9. R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002).
    [CrossRef]
  10. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
    [CrossRef]
  11. SU-8 10 and SU-8 thinner available from MicroChem Corp., www.microchem.com .
  12. Rhodamine 6G Cl and R4127 available from Sigma-Aldrich Co., www.sigmaaldrich.com .
  13. S. Kragh, A. Kristensen, “Miniaturized solid state lasers based on a photodefinable polymer,” in Proceedings of the 17th European Conference on Solid-State Transducers, Eurosensors 2003 (University of Minho, 2003), pp. 380–383.
  14. D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004).
    [CrossRef]
  15. R. M. O’Connell, T. T. Saito, “Plastics for high-power laser application: a review,” Opt. Eng. 22, 393–399 (1983).
  16. S. Popov, “Dye photodestruction in a solid-state dye laser with a polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
    [CrossRef]
  17. A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
    [CrossRef]
  18. F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
    [CrossRef]
  19. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9143–151 (1992).
    [CrossRef]

2004 (1)

D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004).
[CrossRef]

2003 (2)

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3, 42N–52N (2003).

2002 (1)

2001 (2)

Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

1998 (1)

1995 (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

1993 (1)

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

1992 (1)

1983 (1)

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser application: a review,” Opt. Eng. 22, 393–399 (1983).

1976 (1)

C. Hu, S. Kim, “Thin-film dye laser with etched cavity,” Appl. Phys. Lett. 29, 582–585 (1976).
[CrossRef]

1967 (2)

B. H. Soffer, B. B. McFarland, “Continously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1967).
[CrossRef]

Amat-Guerri, F.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Chang, T. H.-P.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Chisaki, Y.

Costela, A.

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Dyumaev, K. M.

Figuera, J. M.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Florido, F.

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

Gelorme, J. D.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Hane, K.

Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).

Hu, C.

C. Hu, S. Kim, “Thin-film dye laser with etched cavity,” Appl. Phys. Lett. 29, 582–585 (1976).
[CrossRef]

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002).
[CrossRef]

Kanetkar, V. R.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

Kim, S.

C. Hu, S. Kim, “Thin-film dye laser with etched cavity,” Appl. Phys. Lett. 29, 582–585 (1976).
[CrossRef]

Kragh, S.

S. Kragh, A. Kristensen, “Miniaturized solid state lasers based on a photodefinable polymer,” in Proceedings of the 17th European Conference on Solid-State Transducers, Eurosensors 2003 (University of Minho, 2003), pp. 380–383.

Kristensen, A.

D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004).
[CrossRef]

S. Kragh, A. Kristensen, “Miniaturized solid state lasers based on a photodefinable polymer,” in Proceedings of the 17th European Conference on Solid-State Transducers, Eurosensors 2003 (University of Minho, 2003), pp. 380–383.

LaBianca, N.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lee, K. Y.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Li, Y.

Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).

Lopez Arbeloa, F.

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

Lopez Arbeloa, I.

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

Lopez Arbeloa, T.

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

Maeda, M.

Manenkov, A. A.

Maslyukov, A. P.

Matyushin, G. A.

McFarland, B. B.

B. H. Soffer, B. B. McFarland, “Continously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Muthuswamy, V.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

Nechitailo, V. S.

Nielsen, T.

D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004).
[CrossRef]

Nilsson, D.

D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004).
[CrossRef]

O’Connell, R. M.

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser application: a review,” Opt. Eng. 22, 393–399 (1983).

Oki, Y.

Peterson, O. G.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1967).
[CrossRef]

Popov, S.

Prokhorov, A. M.

Raja, K.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

Rishton, S. A.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Saito, T. T.

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser application: a review,” Opt. Eng. 22, 393–399 (1983).

Sasaki, M.

Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).

Sastre, R.

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

Schäfer, F. P.

F. P. Schäfer, Dye Lasers (Springer-Verlag, 1973).

Shaw, J.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Singh, S.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

Snavely, B. B.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1967).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, “Continously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Sridhar, G.

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

Verpoorte, E.

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3, 42N–52N (2003).

Yoshiura, T.

Zolgharmain, S.

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Costela, I. Garcia-Moreno, R. Sastre, F. Lopez Arbeloa, T. Lopez Arbeloa, I. Lopez Arbeloa, “Photophysical and lasing properties of pyrromethene 567 dye in solid poly(trifluormethyl methacrylate) matrices with different degrees of crosslinking,” Appl. Phys. B 73, 19–24 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

B. H. Soffer, B. B. McFarland, “Continously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1967).
[CrossRef]

C. Hu, S. Kim, “Thin-film dye laser with etched cavity,” Appl. Phys. Lett. 29, 582–585 (1976).
[CrossRef]

Chem. Phys. Lett. (1)

F. Amat-Guerri, A. Costela, J. M. Figuera, F. Florido, R. Sastre, “Laser action from Rhodamine 6G-doped poly (2-hydroxethyl methacrylate) matrices with different crosslinking degrees,” Chem. Phys. Lett. 209, 352–356 (1993).
[CrossRef]

J. Lum. (1)

S. Singh, V. R. Kanetkar, G. Sridhar, V. Muthuswamy, K. Raja, “Solid-state polymeric dye lasers,” J. Lum. 101, 285–291 (2003).
[CrossRef]

J. Micromech. Microeng. (1)

Y. Li, M. Sasaki, K. Hane, “Fabrication and testing of solid polymer dye microcavity lasers based on PMMA micromolding,” J. Micromech. Microeng. 11, 234–238, (2001).

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharmain, J. D. Gelorme, J. Shaw, T. H.-P. Chang, “Micromachining applications of a high resolution ultrathick photresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995).
[CrossRef]

Lab Chip (1)

E. Verpoorte, “Chip vision-optics for microchips,” Lab Chip 3, 42N–52N (2003).

Opt. Eng. (1)

R. M. O’Connell, T. T. Saito, “Plastics for high-power laser application: a review,” Opt. Eng. 22, 393–399 (1983).

Rev. Sci. Instrum. (1)

D. Nilsson, T. Nielsen, A. Kristensen, “Solid state microcavity dye lasers fabricated by nanoimprint lithography,” Rev. Sci. Instrum. 75, 4481–4486 (2004).
[CrossRef]

Other (5)

F. P. Schäfer, Dye Lasers (Springer-Verlag, 1973).

R. G. Hunsperger, Integrated Optics: Theory and Technology, 5th ed. (Springer-Verlag, 2002).
[CrossRef]

SU-8 10 and SU-8 thinner available from MicroChem Corp., www.microchem.com .

Rhodamine 6G Cl and R4127 available from Sigma-Aldrich Co., www.sigmaaldrich.com .

S. Kragh, A. Kristensen, “Miniaturized solid state lasers based on a photodefinable polymer,” in Proceedings of the 17th European Conference on Solid-State Transducers, Eurosensors 2003 (University of Minho, 2003), pp. 380–383.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic view of the triple-layer SU-8 laser. The light propagates in a single-mode slab waveguide made of SU-8 with a Rhodamine-doped core layer.

Fig. 2
Fig. 2

Refractive index of SU-8 measured as function of Rhodamine concentration. Note that the refractive index is measured at 633 nm.

Fig. 3
Fig. 3

Laser has the lateral shape of a trapezoid and relies on total internal reflection at the SU-8–air interface at three of the vertical cavity walls (B, C, and D). At the fourth cavity wall (A), the angle of incidence θ1 is slightly below the critical angle, allowing for a portion of the light to be coupled out.

Fig. 4
Fig. 4

Normalized E field (x axis) in the triple-layer SU-8 structure for Δn = 0.0013 and core layer thickness tg = 4 μm. Note that ~10 μm outside the core layer, the strength of the E field is negligible (i.e., low optical loss can be achieved if the buffer and cladding layers are >10 μm.

Fig. 5
Fig. 5

Schematic view of the fabrication sequence for the triple-layer SU-8 structure. The buffer, core, and cladding layers are spin coated and soft baked individually and then exposed and developed in one step.

Fig. 6
Fig. 6

Photo of the device seen from the side. In this device the core layer is measured to be ~2–3 μm. The limit for single-mode operation is, however, <5 μm.

Fig. 7
Fig. 7

Microscope image of a device integrated with an SU-8 waveguide. The device has been fabricated first, and then, in a second step, the waveguide is fabricated in undoped SU-8.

Fig. 8
Fig. 8

Output spectrum from a triple-layer laser with a cavity round-trip length of l = 292 ± 5 μm (A laser). The pump pulse fluency is 85 μJ/mm2. Only one transversal mode is present, so the longitudinal modes are clearly visible. The measured mode separation Δλ is ~0.67 ± 0.08 nm, which is in good agrement with the expected value of Δλ = 0.68 ± 0.02 nm.

Fig. 9
Fig. 9

Output spectrum from a triple-layer laser (pump pulse fluency is 127 μJ/mm2) with a cavity round-trip length of l = 470 ± 5 μm (B laser). Only one transversal mode is present, so the longitudinal modes are clearly visible. The measured mode separation Δλ is ~0.39 ± 0.08 nm, which is in good agreement with the expected value of Δλ = 0.417 ± 0.006 nm.

Fig. 10
Fig. 10

Output spectra from four different devices of varying sizes. The round-trip lengths are indicated. The spectrum from the A laser is the same as in Fig. 8. It should be noted that the longitudinal modes are resolved only for the smallest device. For the C, D, and E lasers, the expected mode separations are Δλ ≃ 0.31 nm, Δλ ≃ 0.20 nm, and Δλ ≃ 0.10 nm, respectively. Inset, normalized output intensity as a function of pump pulse fluency. The change in slope at 7μJ/mm2 indicates the threshold for laser operation.

Fig. 11
Fig. 11

Relative output intensity versus number of pulses from a 4.8 μm Rhodamine 6G–doped SU-8 film deposited on a gold surface. Data for pulse energies 7.8 mJ, 10.3 mJ, and 13.9 mJ are shown. The pump laser beam diameter was 6 mm, and the repetition frequency was 10 Hz.

Fig. 12
Fig. 12

Relative output intensity versus number of pulses from a 4.8 μm Rhodamine 6G–doped SU-8 film deposited on a gold surface. Data for repetition frequencies 2.5 Hz, 6 Hz, and 10 Hz are shown. The pump laser beam diameter was 6 mm, and the pulse energy was 10.1 mJ.

Tables (1)

Tables Icon

Table 1 Measured Lasing Threshold for the Five Laser Devicesa

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

m λ m = l n eff ,
Δ n > m s 2 λ 0 2 4 ( n 2 + n 3 ) t g 2 ,

Metrics