Abstract

For the first time, to our knowledge, a highly robust, high-bit-rate (10 Gbit/s) wavelength converter that is based on a narrow Brillouin filter is reported. The conversion takes place in a semiconductor optical amplifier (SOA) in a cross-gain–phase process. The SOA operates in a weak-modulation mode, and the exiting signal undergoes a dc reduction with a narrow spectral filter. In our system we perform spectrally narrow filtering by using a long Brillouin grating.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
    [CrossRef]
  2. J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.
  3. J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
    [CrossRef]
  4. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  5. H.-Y. Yu, D. Mahgerefteh, P. S. Cho, J. Goldhar, “Optimization of the frequency response of a semiconductor optical amplifier wavelength converter using a fiber Bragg grating,” J. Lightwave Technol. 17, 308–315 (1999).
    [CrossRef]
  6. G. P. Agrawal, N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
    [CrossRef]
  7. R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett. 7, 218–220 (1995).
    [CrossRef]
  8. A. Loayssa, D. Benito, M. J. Garde, “Optical carrier Brillouin processing of microwave photonic signals,” Opt. Lett. 25, 1234–1236 (2000).
    [CrossRef]
  9. D. L. Butler, J. S. Wey, M. W. Chbat, L. Burdge, J. Goldhar, “Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,” Opt. Lett. 20, 560–562 (1995).
    [CrossRef] [PubMed]
  10. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  11. S. M. Maughan, H. H. Kee, T. P. Newson, “57-km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
    [CrossRef]
  12. Q. Yu, X. Bao, L. Chen, “Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers,” Opt. Lett. 29, 17–19 (2004).
    [CrossRef] [PubMed]

2004 (1)

2001 (1)

2000 (2)

A. Loayssa, D. Benito, M. J. Garde, “Optical carrier Brillouin processing of microwave photonic signals,” Opt. Lett. 25, 1234–1236 (2000).
[CrossRef]

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

1999 (1)

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1996 (1)

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

1995 (2)

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett. 7, 218–220 (1995).
[CrossRef]

D. L. Butler, J. S. Wey, M. W. Chbat, L. Burdge, J. Goldhar, “Optical clock recovery from a data stream of an arbitrary bit rate by use of stimulated Brillouin scattering,” Opt. Lett. 20, 560–562 (1995).
[CrossRef] [PubMed]

1989 (1)

G. P. Agrawal, N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Bao, X.

Benito, D.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Brenot, R.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Burdge, L.

Burrus, C. A.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Butler, D. L.

Chbat, M. W.

Chen, L.

Cho, P. S.

Daub, K.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Dreyer, K.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Dupas, A.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Dütting, K.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Emery, J.-Y.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Esman, R. D.

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett. 7, 218–220 (1995).
[CrossRef]

Gaborit, F.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Garde, M. J.

Goldhar, J.

Idler, W.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Joyner, C. H.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Kee, H. H.

Klenk, M.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Lach, E.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Laube, G.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Lavigne, B.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Leuthold, J.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Loayssa, A.

Mahgerefteh, D.

Maughan, S. M.

Mikkelsen, B.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Miller, B. I.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Newson, T. P.

Olsson, N. A.

G. P. Agrawal, N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

Pciq, M.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Pleumeekers, J. L.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Poingt, F.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Raybon, G.

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

Renaud, M.

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Schilling, M.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Wey, J. S.

Wiedemann, P.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Williams, K. J.

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett. 7, 218–220 (1995).
[CrossRef]

Wünsel, K.

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

Yu, H.-Y.

Yu, Q.

Electron. Lett. (1)

J. Leuthold, C. H. Joyner, B. Mikkelsen, G. Raybon, J. L. Pleumeekers, B. I. Miller, K. Dreyer, C. A. Burrus, “100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration,” Electron. Lett. 36, 1129–1130 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. P. Agrawal, N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photon. Technol. Lett. 7, 218–220 (1995).
[CrossRef]

W. Idler, K. Daub, G. Laube, M. Schilling, P. Wiedemann, K. Dütting, M. Klenk, E. Lach, K. Wünsel, “10 Gbit/s wavelength conversion with integrated multiquantum-well-based 3-port Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 8, 1163–1165 (1996).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Lett. (4)

Other (2)

R. W. Boyd, Nonlinear Optics (Academic, 1992).

J.-Y. Emery, M. Pciq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (1 dB) for optical networking applications,” in Optical Fiber Communications Conference (OFC), Postconference Digest, Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper MB4-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic presentation of the XGP converted signal. The incident field amplitude is Ain(t) = [Iin(t)]1/2, whereas the SOA’s output field is A(t)exp[iφ(t)].

Fig. 2
Fig. 2

Schematic description of the reinversion process. When the SOA’s electromagnetic field can be separated into its dc A and ac a(t) parts, after the dc reduction from A to a the original shape of the SOA’s output is achieved, whereas the reduction to −a reinverts the signal.

Fig. 3
Fig. 3

System schematic.

Fig. 4
Fig. 4

Experimental results of the Brillouin wavelength converter: upper panel, input signal pattern; center panel, low-modulation (poor-extinction-ratio) cross-gain pattern (after the SOA); lower panel, high-extinction-ratio output signal.

Fig. 5
Fig. 5

Experimental results of the compensation mechanism: (a) incident signal; (b) SOA output signal; (c) signal that exits the filter; (d) resulting signal with the compensation mechanism.

Fig. 6
Fig. 6

Compensation mechanism. A portion of the incident signal is converted to an electronic signal with an optical detector. This electronic signal, after passing through an integrator, is used to modulate a cw source laser (idler) used to control the SOA’s gain.

Fig. 7
Fig. 7

Eye diagrams (231-1 PRBS) of the output signal, left, without compensation and, right, with compensation.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E out ( t ) = A ( t ) exp [ i φ ( t ) ] ,
A ( t ) A max + α I in ( t ) ,
φ ( t ) φ 0 + β I in ( t ) .
E con ( t ) = A ( t ) exp [ i ϕ ( t ) ] - A max exp ( i φ 0 ) ,
E con ( t ) = 2 A max exp { i [ φ 0 + β I in ( t ) / 2 ] } sin [ β I in ( t ) / 2 ] + α I in ( t ) exp { i [ φ 0 + β I in ( t ) ] } ,
η = 1 - A max exp ( i φ 0 ) A ( t ) exp [ i φ ( t ) ] ,
d φ p d z = 1 2 q g 1 + q 2 I s ,

Metrics