Abstract

We investigated the beam-fanning effect in Fe-doped stoichiometric lithium niobate (Fe:SLN) crystals that were grown by the top-seeded solution growth method. Deterministic beam fanning (DBF) was measured in Z-cut Fe:SLN crystal for incident light propagating along the c+ and c axes. The dependence of beam-fanning factors on incident power density was also studied. The experimental results of DBF in the Z-cut Fe:SLN crystal were in good agreement with a theoretical simulation based on a two-wave mixing model. The results compared with those for Fe-doped congruent lithium niobate crystals indicate that the beam-fanning process in Fe:SLN is deterministic because of its much-reduced intrinsic density of defects.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
    [CrossRef]
  2. L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
    [CrossRef] [PubMed]
  3. G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999).
    [CrossRef]
  4. J. J. Liu, P. P. Banerjee, Q. W. Song, “Role of diffusive, photovoltaic, and thermal effects in beam fanning in LiNbO3,” J. Opt. Soc. Am. B 11, 1688–1693 (1994).
    [CrossRef]
  5. V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987).
    [CrossRef]
  6. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  7. X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe crystals,” Appl. Opt. 40, 683–686 (2001).
    [CrossRef]
  8. D. C. Jones, G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Commun. 180, 391–402 (2000).
    [CrossRef]
  9. S. G. Odoulov, B. I. Sturman, E. Shamonina, K. H. Ringhofer, “Stochastic photorefractive backscattering from LiNbO3 crystals,” Opt. Lett. 21, 854–856 (1996).
    [CrossRef] [PubMed]
  10. R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984).
    [CrossRef]
  11. G. Zhang, Q. X. Li, P. P. Ho, S. Liu, Z. Kang, R. R. Alfano, “Dependence of specklon size on the laser beam size via photoinduced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986).
    [CrossRef]
  12. S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003).
    [CrossRef]
  13. M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
    [CrossRef]
  14. V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
    [CrossRef]
  15. I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).
  16. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
    [CrossRef]
  17. D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
    [CrossRef]
  18. L. Solymar, D. J. Webb, A. G. Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).
  19. D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
    [CrossRef]
  20. G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
    [CrossRef]

2003 (1)

S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003).
[CrossRef]

2001 (1)

2000 (2)

D. C. Jones, G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Commun. 180, 391–402 (2000).
[CrossRef]

D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

1999 (3)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999).
[CrossRef]

D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

1998 (2)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

1996 (2)

M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

S. G. Odoulov, B. I. Sturman, E. Shamonina, K. H. Ringhofer, “Stochastic photorefractive backscattering from LiNbO3 crystals,” Opt. Lett. 21, 854–856 (1996).
[CrossRef] [PubMed]

1994 (1)

1987 (1)

V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987).
[CrossRef]

1986 (1)

1984 (1)

R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984).
[CrossRef]

1979 (2)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
[CrossRef]

1978 (1)

I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Akella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Alfano, R. R.

Banerjee, P. P.

Betzler, K.

M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

Chen, X.

Chong, T. C.

S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003).
[CrossRef]

Cook, D. G.

D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

Cook, G.

D. C. Jones, G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Commun. 180, 391–402 (2000).
[CrossRef]

Corradi, G.

M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

Finnan, C. J.

D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

Fujiwara, T.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Furukawa, Y.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Grachev, V.

G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999).
[CrossRef]

Grousson, R.

R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984).
[CrossRef]

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Ho, P. P.

Huang, H.

Ikushima, A. J.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Jepsen, A. G.

L. Solymar, D. J. Webb, A. G. Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Jones, D. C.

D. C. Jones, G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Commun. 180, 391–402 (2000).
[CrossRef]

D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

Kanaev, I. F.

I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Kang, Z.

Kitamura, K.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Kukhtarev, N. V.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Lemeshko, V. V.

V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987).
[CrossRef]

Li, Q. X.

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Liu, D.

D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Liu, J. J.

Liu, L.

D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Liu, S.

Liu, Y.

D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Malinovskii, V. K.

I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Mallick, S.

R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984).
[CrossRef]

Malovichki, G.

G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Obukhovskii, V. V.

V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987).
[CrossRef]

Odoulov, S.

R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984).
[CrossRef]

Odoulov, S. G.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
[CrossRef]

Ohama, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Ringhofer, K. H.

Schirmer, O.

G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999).
[CrossRef]

Shamonina, E.

Solanki, S.

S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003).
[CrossRef]

Solymar, L.

L. Solymar, D. J. Webb, A. G. Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Song, Q. W.

Soskin, M. S.

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

Stoyanov, A. V.

V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987).
[CrossRef]

Sturman, B. I.

S. G. Odoulov, B. I. Sturman, E. Shamonina, K. H. Ringhofer, “Stochastic photorefractive backscattering from LiNbO3 crystals,” Opt. Lett. 21, 854–856 (1996).
[CrossRef] [PubMed]

I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Sun, Q.

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Takahashi, M.

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
[CrossRef]

Webb, D. J.

L. Solymar, D. J. Webb, A. G. Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

Wohlecke, M.

M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

Wolfsberger, J.

Xu, J.

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe crystals,” Appl. Opt. 40, 683–686 (2001).
[CrossRef]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Xu, X. W.

S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003).
[CrossRef]

Yeh, P.

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Zhang, G.

X. Zhang, J. Xu, S. Liu, H. Huang, J. Wolfsberger, X. Chen, G. Zhang, “Temporal evolution of beam fanning in LiNbO3:Fe crystals,” Appl. Opt. 40, 683–686 (2001).
[CrossRef]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

G. Zhang, Q. X. Li, P. P. Ho, S. Liu, Z. Kang, R. R. Alfano, “Dependence of specklon size on the laser beam size via photoinduced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986).
[CrossRef]

Zhang, X.

Zhou, C.

D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

M. Wohlecke, G. Corradi, K. Betzler, “Optical methods to characterize the composition and homogeneity of lithium niobate single crystals,” Appl. Phys. B 63, 323–330 (1996).
[CrossRef]

D. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

G. Malovichki, V. Grachev, O. Schirmer, “Interrelation of intrinsic and extrinsic defects—congruent, stoichiometric, and regularly ordered lithium niobate,” Appl. Phys. B 68, 785–793 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

D. Liu, L. Liu, Y. Liu, C. Zhou, “Self-enhanced nonvolatile holographic storage in LiNbO3:Fe:Mn crystals,” Appl. Phys. Lett. 77, 2964–2966 (2000).
[CrossRef]

Electron. Lett. (1)

T. Fujiwara, M. Takahashi, M. Ohama, A. J. Ikushima, Y. Furukawa, K. Kitamura, “Comparison of electro-optic effect between stoichiometric and congruent LiNbO3,” Electron. Lett. 35, 499–501 (1999).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electrooptic crystals. 1. Steady state,” Ferroelectrics 22, 949–960 (1979).
[CrossRef]

J. Appl. Phys. (1)

G. Zhang, G. Zhang, S. Liu, J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M= Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

J. Cryst. Growth (1)

S. Solanki, T. C. Chong, X. W. Xu, “Flux growth and morphology study of stoichiometric lithium niobate crystals,” J. Cryst. Growth 250, 134–138 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. C. Jones, G. Cook, “Non-reciprocal transmission through photorefractive crystals in the transient regime using reflection geometry,” Opt. Commun. 180, 391–402 (2000).
[CrossRef]

R. Grousson, S. Mallick, S. Odoulov, “Amplified backward scattering in LiNbO3:Fe,” Opt. Commun. 51, 342–346 (1984).
[CrossRef]

Opt. Lett. (1)

Science (1)

L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089–1094 (1998).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

V. V. Obukhovskii, A. V. Stoyanov, V. V. Lemeshko, “Photoinduced scattering of light by fluctuations of photoelectric parameters of a medium,” Sov. J. Quantum Electron. 17, 64–68 (1987).
[CrossRef]

Sov. Phys. JETP (1)

I. F. Kanaev, V. K. Malinovskii, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Sov. Phys. Usp. (1)

V. L. Vinetskii, N. V. Kukhtarev, S. G. Odulov, M. S. Soskin, “Dynamic self-diffraction of coherent light beams,” Sov. Phys. Usp. 22, 742–756 (1979).
[CrossRef]

Other (2)

L. Solymar, D. J. Webb, A. G. Jepsen, The Physics and Applications of Photorefractive Materials (Clarendon, 1996).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup: PM, powermeter; other abbreviations defined in text.

Fig. 2
Fig. 2

Absorption spectra of as-grown and reduced Z-cut Fe:SLN crystal samples.

Fig. 3
Fig. 3

Temporal evolution of the transmitted light intensity for light incident along the c+ and c axes of Z-cut Fe:SLN.

Fig. 4
Fig. 4

Beam-fanning factor F with incident power density Ip for light incident along the c+ and c axes of Z-cut Fe:SLN.

Fig. 5
Fig. 5

Temporal evolution of the transmitted light intensity for light incident along the c+ and c axes of Z-cut Fe:CLN.

Fig. 6
Fig. 6

Beam-fanning factor F with incident power density Ip for light incident along the c+ and c axes of Z-cut Fe:CLN.

Fig. 7
Fig. 7

Temporal evolution of the transmitted light intensity for the light incident along the X axis of Fe:SLN.

Fig. 8
Fig. 8

Beam-fanning factor F with incident power density Ip for light incident along the X axes of (a) Fe:SLN and (b) Fe:CLN.

Fig. 9
Fig. 9

Transmitted beam spots: (a) k||c+, Fe:SLN; (b) k||c, Fe:SLN; (c) k||X, Fe:SLN; (d) k||c+, Fe:CLN; (e) k||c, Fe:CLN; (f) k||X, Fe: CLN.

Fig. 10
Fig. 10

Simulation results for the temporal evolution of the transmitted light intensity for light incident along the c+ and c axes of Z-cut Fe:SLN.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( z , t ) = I 0 { 1 + 2 I p I r I p + I r exp [ - i ( K z + Ψ 2 - Ψ 1 ) ] } ,
d N Fe 0 - d t = - ( β + S I 0 ) N Fe 0 - + γ n e 0 ( N Fe - N Fe 0 - ) ,
d n e 0 d t = - d N Fe 0 - d t ,
j 1 = e μ n e 0 E sc - i K k B T μ n e 1 + κ I 0 N Fe 1 - + κ m I 0 N Fe 0 - ,
d N Fe 1 - d t = - ( β + S I 0 + γ n e 0 ) N Fe 1 - - S m I 0 N Fe 0 - + γ n e 1 ( N F e - N Fe 0 - ) ,
d n e 1 d t = - i K e j 1 - d N Fe 1 - d t ,
d E sc d t = j 1 ɛ s ,
m = 2 I p I s I 0 + I r exp ( i φ ) ,
d I p d z = - α I p - γ I p I r sin ( Ψ - φ ) ,
d I r d z = α I p - Γ I p I r sin ( Ψ - φ ) ,
d Ψ d z = Γ 2 ( I p - I r ) I p I r cos ( Ψ - φ ) ,
Γ = 2 π n 0 3 r eff E sc λ cos ( θ ) ,
I p ( 0 , t ) = ( 1 - R ) I p ( 0 ) ,
I r ( L , t ) = R I p ( L , t ) ,

Metrics