Abstract

Given the wavelength dependence of sample optical properties and the selective sampling of surface emission angles by noncontact imaging systems, differences in angular profiles due to excitation angle and optical properties can distort relative emission intensities acquired at different wavelengths. To investigate this potentiality, angular profiles of diffuse reflectance and fluorescence emission from turbid media were evaluated experimentally and by Monte Carlo simulation for a range of incident excitation angles and sample optical properties. For emission collected within the limits of a semi-infinite excitation region, normalized angular emission profiles are symmetric, roughly Lambertian, and only weakly dependent on sample optical properties for fluorescence at all excitation angles and for diffuse reflectance at small excitation angles relative to the surface normal. Fluorescence and diffuse reflectance within the emission plane orthogonal to the oblique component of the excitation also possess this symmetric form. Diffuse reflectance within the incidence plane is biased away from the excitation source for large excitation angles. The degree of bias depends on the scattering anisotropy and albedo of the sample and results from the correlation between photon directions upon entrance and emission. Given the strong dependence of the diffuse reflectance angular emission profile shape on incident excitation angle and sample optical properties, excitation and collection geometry has the potential to induce distortions within diffuse reflectance spectra unrelated to tissue characteristics.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. J. Bigio, S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3, 259–267 (2004).
    [CrossRef] [PubMed]
  2. K. Sokolov, M. Follen, R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651–658 (2002).
    [CrossRef] [PubMed]
  3. I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
    [CrossRef] [PubMed]
  4. A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
    [CrossRef] [PubMed]
  5. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
    [CrossRef] [PubMed]
  6. R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef] [PubMed]
  7. J. Y. Qu, Z. Huang, J. Hua, “Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media,” Appl. Opt. 39, 3344–3356 (2000).
    [CrossRef]
  8. D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47, 4271–4285 (2002).
    [CrossRef] [PubMed]
  9. W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 275–304.
  10. H. van de Hulst, “Rigorous scattering theory for spheres of arbitrary size (Mie theory),” in Light Scattering by Small Particles (Dover, 1981), pp. 114–130.
  11. S. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 73–100.
    [CrossRef]
  12. S. C. Gebhart, W.-C. Lin, A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding–doubling,” submitted to Phys. Med. Biol.
  13. A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
    [CrossRef] [PubMed]
  14. S. Prahl, M. van Gemert, A. Welch, “Determining the optical properties of turbid media by using the adding–doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  15. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
    [CrossRef] [PubMed]
  16. T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  17. S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
    [CrossRef] [PubMed]
  18. H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
    [CrossRef] [PubMed]
  19. F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
    [CrossRef]
  20. M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
    [CrossRef] [PubMed]
  21. J. Wu, F. Partovi, M. S. Field, R. P. Rava, “Diffuse reflectance from turbid media: an analytical model of photon migration,” Appl. Opt. 32, 1115–1121 (1993).
    [CrossRef] [PubMed]

2004

I. J. Bigio, S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3, 259–267 (2004).
[CrossRef] [PubMed]

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

2002

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

K. Sokolov, M. Follen, R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651–658 (2002).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47, 4271–4285 (2002).
[CrossRef] [PubMed]

2000

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

J. Y. Qu, Z. Huang, J. Hua, “Excitation-and-collection geometry insensitive fluorescence imaging of tissue-simulating turbid media,” Appl. Opt. 39, 3344–3356 (2000).
[CrossRef]

M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
[CrossRef] [PubMed]

1997

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

1996

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

1993

1992

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

1989

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Bigio, I. J.

I. J. Bigio, S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3, 259–267 (2004).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

Bown, S. G.

I. J. Bigio, S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3, 259–267 (2004).
[CrossRef] [PubMed]

Chan, E.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Chen, B. Q.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Chen, R. P.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Cheong, W.-F.

W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 275–304.

Churmakov, D. Y.

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47, 4271–4285 (2002).
[CrossRef] [PubMed]

Cote, G. L.

M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
[CrossRef] [PubMed]

Criswell, G.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Field, M. S.

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Follen, M.

K. Sokolov, M. Follen, R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651–658 (2002).
[CrossRef] [PubMed]

Gardner, C.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Gebhart, S. C.

S. C. Gebhart, W.-C. Lin, A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding–doubling,” submitted to Phys. Med. Biol.

Greenhalgh, D. A.

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47, 4271–4285 (2002).
[CrossRef] [PubMed]

Hua, J.

Huang, Z.

Jacques, S.

S. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 73–100.
[CrossRef]

Larsson, M.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

Lin, W.-C.

S. C. Gebhart, W.-C. Lin, A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding–doubling,” submitted to Phys. Med. Biol.

Mahadevan-Jansen, A.

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

S. C. Gebhart, W.-C. Lin, A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding–doubling,” submitted to Phys. Med. Biol.

McShane, M. J.

M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
[CrossRef] [PubMed]

Meglinski, I. V.

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47, 4271–4285 (2002).
[CrossRef] [PubMed]

Mourant, J. R.

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

Nilsson, G. E.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

Nilsson, H.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

Partovi, F.

Patterson, M. S.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Pfefer, J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Pishko, M.

M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
[CrossRef] [PubMed]

Prahl, S.

Qu, J. Y.

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Rastegar, S.

M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
[CrossRef] [PubMed]

Rava, R. P.

Richards-Kortum, R.

K. Sokolov, M. Follen, R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651–658 (2002).
[CrossRef] [PubMed]

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Sevick-Muraca, E.

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Sokolov, K.

K. Sokolov, M. Follen, R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651–658 (2002).
[CrossRef] [PubMed]

Song, D. C.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Stromberg, T.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

van de Hulst, H.

H. van de Hulst, “Rigorous scattering theory for spheres of arbitrary size (Mie theory),” in Light Scattering by Small Particles (Dover, 1981), pp. 114–130.

van Gemert, M.

Wang, L.

S. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 73–100.
[CrossRef]

Warren, S.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Welch, A.

Welch, A. J.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Wilson, B.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Wu, J.

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

Yang, S. M.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

Zhang, F. J.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Zhao, S. Z.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Annu. Rev. Phys. Chem.

R. Richards-Kortum, E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Cancer Biol. Ther.

I. J. Bigio, S. G. Bown, “Spectroscopic sensing of cancer and cancer therapy: current status of translational research,” Cancer Biol. Ther. 3, 259–267 (2004).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol.

K. Sokolov, M. Follen, R. Richards-Kortum, “Optical spectroscopy for detection of neoplasia,” Curr. Opin. Chem. Biol. 6, 651–658 (2002).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng.

M. J. McShane, S. Rastegar, M. Pishko, G. L. Cote, “Monte Carlo modeling for implantable fluorescent analyte sensors,” IEEE Trans. Biomed. Eng. 47, 624–632 (2000).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, D. R. Wyman, “Monte Carlo modeling of light propagation in highly scattering tissue—I: Model predictions and comparison with diffusion theory,” IEEE Trans. Biomed. Eng. 36, 1162–1168 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt.

H. Nilsson, M. Larsson, G. E. Nilsson, T. Stromberg, “Photon pathlength determination based on spatially resolved diffuse reflectance,” J. Biomed. Opt. 7, 478–485 (2002).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, R. Richards-Kortum, “Raman spectroscopy for the detection of cancers and precancers,” J. Biomed. Opt. 1, 31–70 (1996).
[CrossRef] [PubMed]

Lasers Surg. Med.

A. J. Welch, C. Gardner, R. Richards-Kortum, E. Chan, G. Criswell, J. Pfefer, S. Warren, “Propagation of fluorescent light,” Lasers Surg. Med. 21, 166–178 (1997).
[CrossRef] [PubMed]

Med. Phys.

T. J. Farrell, M. S. Patterson, B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Neoplasia

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Opt. Laser Technol.

F. J. Zhang, B. Q. Chen, S. Z. Zhao, S. M. Yang, R. P. Chen, D. C. Song, “Noninvasive determination of tissue optical properties based on radiative transfer theory,” Opt. Laser Technol. 36, 353–359 (2004).
[CrossRef]

Phys. Med. Biol.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, “Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy,” Phys. Med. Biol. 42, 803–814 (1997).
[CrossRef] [PubMed]

D. Y. Churmakov, I. V. Meglinski, D. A. Greenhalgh, “Influence of refractive index matching on the photon diffuse reflectance,” Phys. Med. Biol. 47, 4271–4285 (2002).
[CrossRef] [PubMed]

Other

W.-F. Cheong, “Summary of optical properties,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 275–304.

H. van de Hulst, “Rigorous scattering theory for spheres of arbitrary size (Mie theory),” in Light Scattering by Small Particles (Dover, 1981), pp. 114–130.

S. Jacques, L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue,A. Welch, M. v. Gemert, ed. (Plenum, 1995), pp. 73–100.
[CrossRef]

S. C. Gebhart, W.-C. Lin, A. Mahadevan-Jansen, “In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding–doubling,” submitted to Phys. Med. Biol.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic for experimental measurement of fluorescence and diffuse reflectance angular emission profiles as a function of emission angle θ. The diagram depicts measurement along the Φ = 0°/180° plane for a possible range of excitation angles (α) between 0° and 90°. The collection subsystem was rotated 90° with respect to the sample to measure profiles along the depicted Φ = 90°/270° plane. An extender on the end of the collection probe limited its numerical aperture and confined collection to a narrow range of emission angles at each angular position.

Fig. 2
Fig. 2

Geometry assignments for Monte Carlo simulation of light propagation in tissue.

Fig. 3
Fig. 3

Experimentally measured angular profiles for diffuse reflectance emission: (a) α = 0° excitation, both emission planes; (b) Φ = 60° excitation, Φ = 0°/180° plane; (c) α = 60° excitation, Φ = 90°/270° plane. Multiple curves in each plot represent discrete detected wavelengths and optical properties (μs, g shown in the legend) for the phantom samples.

Fig. 4
Fig. 4

Experimentally measured angular profiles for fluorescence emission: (a) α = 0° excitation, both emission planes; (b) α = 60° excitation, Φ = 0°/180° plane; (c) α = 60° excitation, Φ = 90°/270° plane. Multiple curves in each plot represent discrete detected wavelengths and optical properties (μs,em, g shown in the legend) for the phantom samples at the emission wavelength. The measurements for (a) were acquired from fluorescence phantom 1 described in Table 2. The measurements for (b) and (c) were acquired from fluorescence phantom 2.

Fig. 5
Fig. 5

MPD versus reduced scattering for various excitation angles and emission planes of experimentally measured (a) diffuse reflectance and (b) fluorescence. Regression lines were calculated using a least-squares fit.

Fig. 6
Fig. 6

Angular emission profiles produced by Monte Carlo simulation versus spatial position within the impulse response: (a) diffuse reflectance after 0° excitation, (b) diffuse reflectance after 60° excitation, (c) fluorescence after 0° excitation, (d) fluorescence after 60° excitation. The header of each graph depicts the five emission regions from which the angular emission profiles were calculated as well as a contour of the impulse response integrated over all emission angles. The profiles derive from the Φ = 0°/180° emission plane with simulation parameters (at the excitation wavelength for fluorescence): μs = 100 cm−1, μa = 10 cm−1, g = 0.9.

Fig. 7
Fig. 7

Angular emission profiles produced by Monte Carlo simulation versus spatial position within the excitation spot: (a) diffuse reflectance within the spot interior; (b) diffuse reflectance along the spot edges; (c) fluorescence within the spot interior; (d) fluorescence along the spot edges. The profiles were integrated over 1 mm × 1 mm surface areas [shown in the headers of Figs. 7(a) and (b)] and derive from the Φ = 0°/180° emission plane with simulation parameters (at the excitation wavelength for fluorescence): μs = 100 cm−1, μa = 10 cm−1, g = 0.9, α = 60°.

Fig. 8
Fig. 8

Representative angular emission profiles of diffuse reflectance produced by Monte Carlo simulation: (a) α = 0° excitation, (b) α = 60° excitation. An absorption coefficient of μa = 10 cm−1 and an anisotropy coefficient of g = 0.9 were used for all simulations.

Fig. 9
Fig. 9

Representative angular emission profiles of fluorescence produced by Monte Carlo simulation: (a) α = 0° excitation, (b) α = 60° excitation. Scattering coefficients shown correspond to the excitation wavelength. Scattering at the emission wavelength was consistently equal to 70% of scattering at the excitation wavelength. Absorption coefficients for all simulations were set to 10 cm−1 for excitation and 7.0 cm−1 for emission. An anisotropy coefficient of g = 0.9 was used for all simulations for excitation and emission.

Fig. 10
Fig. 10

Simulated diffuse reflectance angular emission profiles within the incidence plane at α = 60° excitation and for (a) varying scattering coefficients, (b) varying absorption coefficients, (c) varying anisotropy coefficients. When not varied, the other optical property coefficients were held constant at μs = 100 cm−1, μa = 10 cm−1, and g = 0.9.

Fig. 11
Fig. 11

Simulated diffuse reflectance angular emission profiles within the incidence plane at α = 60° excitation and for (a) constant reduced scattering, μs′ = 10 cm−1; (b) two cases of constant albedo, A = 0.909 and 0.988; (c) two cases of constant reduced albedo, A′ = 0.5 and 0.889.

Fig. 12
Fig. 12

Demonstration of spectral distortion due to the optical property dependence of angular emission profiles: (a) sample optical property spectra employed in spectral imaging simulation, (b) normalized diffuse reflectance spectra for four excitation–collection geometries.

Tables (8)

Tables Icon

Table 1 Tissue Phantoms for Experimental Measurement of Diffuse Reflectance

Tables Icon

Table 2 Tissue Phantoms for Experimental Measurement of Fluorescence Angular Emission Profilesa

Tables Icon

Table 3 Monte Carlo Simulations of Diffuse Reflectance Angular Emission Profiles Along the ϕ = 0°/180° and ϕ = 90°/270° Emission Planes for α = 0° and α = 60° Excitation Angles

Tables Icon

Table 4 Monte Carlo Simulations of Fluorescence Angular Emission Profiles Along the ϕ = 0°/180° and ϕ = 90°/270° Emission Planes for α = 0° and α = 60° Excitation Angles

Tables Icon

Table 5 MPD of Diffuse Reflectance (Rd) and Fluorescence (F) Angular Emission Profiles for Two Excitation Angles (α), Two Reduced Scattering Coefficients (μs′) along the Two Emission Planes (Φ)a

Tables Icon

Table 6 Monte Carlo Simulations to Investigate the Effects of Optical Properties (μs, μa, and g) on Diffuse Reflectance Angular Emission Profiles along the ϕ = 0°/180° Emission Plane for α = 60° Excitation

Tables Icon

Table 7 Monte Carlo Simulations to Investigate the Effects of Reduced Scattering Coefficient (μs′), Albedo (A), and Reduced Albedo (A′) on Diffuse Reflectance Angular Emission Profiles along the α = 0°/180° Emission Plane for α = 60° Excitation

Tables Icon

Table 8 Weighted Mean Number of Steps per Emitted Photon along the Four Quadrants of the Principal Emission Planes for Various Simulation Parametersa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

MPD ( % ) = 1 N k = 1 N = 8 × [ I ( θ = + 10 ° * k ) - I ( θ = - 10 ° * k ) I ( θ = + 10 ° * k ) + I ( θ = - 10 ° * k ) * 100 ] .
u x = ( n 0 / n 1 ) sin ( α ) , u y = 0 , u z = cos ( α R ) ,
μ SE = i = 1 N SE i w i i = 1 N w i .

Metrics