Abstract

A fiber-Bragg-grating (FBG) transverse-force sensor based on a wavelength-switching actively mode-locked erbium-doped fiber laser is proposed, in which a FBG is used as both the sensing element and the wavelength-selection element of the laser. When a force is applied to the FBG, the induced birefringence in the FBG causes the laser to emit pulses at two close wavelengths, whose separation is proportional to the applied force. To suppress the interference between the two wavelengths, the laser is made to emit at the two wavelengths alternately by use of a polarization-switching technique. The wavelength separation is converted into a time difference by transmission of the laser pulses through a dispersive single-mode fiber, so the wavelength measurement is replaced by the less-expensive time measurement. The output of the sensor is insensitive to temperature and axial strain changes along the FBG. To interrogate similar FBG sensing elements connected in series it is necessary only to change the modulating frequency of an electro-optic modulator to select the corresponding laser cavity. The practicability of this approach was demonstrated experimentally with two multiplexed sensing elements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
    [CrossRef]
  3. A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
    [CrossRef]
  4. A. D. Kersey, W. W. Morey, “Multi-element Bragg grating based fibre-laser strain-sensor,” Electron. Lett. 29, 964–966 (1993).
    [CrossRef]
  5. S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
    [CrossRef]
  6. Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
    [CrossRef]
  7. S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
    [CrossRef]
  8. G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multiple fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
    [CrossRef]
  9. L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19, 553–558 (2001).
    [CrossRef]
  10. Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
    [CrossRef]
  11. R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
    [CrossRef]
  12. C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
    [CrossRef]
  13. G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993).
    [CrossRef] [PubMed]
  14. J. L. Kringlebotn, W. H. Loh, R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21, 1869–1871 (1996).
    [CrossRef] [PubMed]
  15. M. Leblanc, S. T. Vohra, T. E. Tsai, E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091–1093 (1999).
    [CrossRef]
  16. Y. Liu, L. Zhang, I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
    [CrossRef]
  17. C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
    [CrossRef]
  18. E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
    [CrossRef]
  19. K. S. Chiang, “Temperature sensitivity of coated stress-induced birefringent optical fibers,” Opt. Eng. 36, 999–1007 (1997).
    [CrossRef]
  20. Y. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 17, 450–452 (2005).
    [CrossRef]
  21. Y. Zhao, C. Shu, “A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72, 1156–1158 (1998).
    [CrossRef]
  22. M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
    [CrossRef]

2005 (1)

Y. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 17, 450–452 (2005).
[CrossRef]

2004 (2)

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

2003 (1)

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

2002 (1)

C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
[CrossRef]

2001 (3)

L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19, 553–558 (2001).
[CrossRef]

S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
[CrossRef]

Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
[CrossRef]

1999 (3)

M. Leblanc, S. T. Vohra, T. E. Tsai, E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091–1093 (1999).
[CrossRef]

Y. Liu, L. Zhang, I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
[CrossRef]

1998 (1)

Y. Zhao, C. Shu, “A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72, 1156–1158 (1998).
[CrossRef]

1997 (3)

K. S. Chiang, “Temperature sensitivity of coated stress-induced birefringent optical fibers,” Opt. Eng. 36, 999–1007 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

1996 (2)

R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

J. L. Kringlebotn, W. H. Loh, R. I. Laming, “Polarimetric Er3+-doped fiber distributed-feedback laser sensor for differential pressure and force measurements,” Opt. Lett. 21, 1869–1871 (1996).
[CrossRef] [PubMed]

1993 (5)

G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993).
[CrossRef] [PubMed]

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multi-element Bragg grating based fibre-laser strain-sensor,” Electron. Lett. 29, 964–966 (1993).
[CrossRef]

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multiple fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Abad, S.

Alavie, A. T.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Atia, W. A.

R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Ball, G. A.

G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993).
[CrossRef] [PubMed]

G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multiple fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Bennett, T.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
[CrossRef]

Bennion, I.

Y. Liu, L. Zhang, I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

Chehura, E.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Cheo, P. K.

G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multiple fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Chiang, K. S.

Y. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 17, 450–452 (2005).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

K. S. Chiang, “Temperature sensitivity of coated stress-induced birefringent optical fibers,” Opt. Eng. 36, 999–1007 (1997).
[CrossRef]

Chu, P. L.

Y. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 17, 450–452 (2005).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Chung, W.

Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
[CrossRef]

Coroy, T.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Friebele, E. J.

M. Leblanc, S. T. Vohra, T. E. Tsai, E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091–1093 (1999).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

James, S. W.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
[CrossRef]

Jarabo, S.

Karr, S.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multi-element Bragg grating based fibre-laser strain-sensor,” Electron. Lett. 29, 964–966 (1993).
[CrossRef]

Kim, S.

S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
[CrossRef]

S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kringlebotn, J. L.

Kuzin, E. A.

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

Kwon, J.

S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
[CrossRef]

Laming, R. I.

Lawrence, C. M.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
[CrossRef]

Leblanc, M.

LeBlanc, M. L.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lee, B.

S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
[CrossRef]

Liu, K.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

Liu, Y.

Y. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 17, 450–452 (2005).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, L. Zhang, I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

Loh, W. H.

Lopez-Amo, M.

Lui, L.

Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
[CrossRef]

Marquez-Borbon, I.

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

May-Alarcon, M.

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

Measures, R. M.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

Melle, S. M.

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

Meltz, G.

Morey, W. W.

G. A. Ball, G. Meltz, W. W. Morey, “Polarimetric heterodyning Bragg-grating fiber-laser sensor,” Opt. Lett. 18, 1976–1978 (1993).
[CrossRef] [PubMed]

G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multiple fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multi-element Bragg grating based fibre-laser strain-sensor,” Electron. Lett. 29, 964–966 (1993).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

Nelson, D. V.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

Shlyagin, M. G.

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

Shu, C.

Y. Zhao, C. Shu, “A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72, 1156–1158 (1998).
[CrossRef]

Singh, H.

R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Sirkis, J. S.

R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Staines, S. E.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
[CrossRef]

Talaverano, L.

Tam, H.

Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
[CrossRef]

Tatam, R. P.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
[CrossRef]

Tsai, T. E.

Udd, E.

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
[CrossRef]

Vazuez-Sanchez, R. A.

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

Vohra, S. T.

Wagreich, R. B.

R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Ye, C. C.

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
[CrossRef]

Yu, Y.

Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
[CrossRef]

Zhang, L.

Y. Liu, L. Zhang, I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

Zhao, Y.

Y. Zhao, C. Shu, “A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72, 1156–1158 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Zhao, C. Shu, “A fiber laser for effective generation of tunable single- and dual-wavelength mode-locked optical pulses,” Appl. Phys. Lett. 72, 1156–1158 (1998).
[CrossRef]

Electron. Lett. (4)

Y. Liu, L. Zhang, I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation,” Electron. Lett. 29, 112–114 (1993).
[CrossRef]

A. D. Kersey, W. W. Morey, “Multi-element Bragg grating based fibre-laser strain-sensor,” Electron. Lett. 29, 964–966 (1993).
[CrossRef]

R. B. Wagreich, W. A. Atia, H. Singh, J. S. Sirkis, “Effects of diametric load on fibre Bragg gratings fabricated in low birefringence fibre,” Electron. Lett. 32, 1223–1224 (1996).
[CrossRef]

Exp. Mech. (1)

C. M. Lawrence, D. V. Nelson, E. Udd, T. Bennett, “A fiber optic sensor for transverse strain measurement,” Exp. Mech. 39, 203–209 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

S. Kim, J. Kwon, S. Kim, B. Lee, “Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 13, 350–352 (2001).
[CrossRef]

Y. Yu, L. Lui, H. Tam, W. Chung, “Fiber-laser-based wavelength-division multiplexed fiber Bragg grating sensor system,” IEEE Photon. Technol. Lett. 13, 702–704 (2001).
[CrossRef]

S. M. Melle, A. T. Alavie, S. Karr, T. Coroy, K. Liu, R. M. Measures, “A Bragg grating-tuned fiber laser strain sensor system,” IEEE Photon. Technol. Lett. 5, 263–266 (1993).
[CrossRef]

G. A. Ball, W. W. Morey, P. K. Cheo, “Single- and multiple fiber-laser sensors,” IEEE Photon. Technol. Lett. 5, 267–270 (1993).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Multiplexing of temperature-compensated fiber-Bragg-grating magnetostrictive sensors with a dual-wavelength pulse laser,” IEEE Photon. Technol. Lett. 16, 572–574 (2004).
[CrossRef]

Y. Liu, K. S. Chiang, P. L. Chu, “Fiber-Bragg-grating force sensor based on a wavelength-switched self-seeded Fabry–Perot laser diode,” IEEE Photon. Technol. Lett. 17, 450–452 (2005).
[CrossRef]

J. Lightwave Technol. (2)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. L. LeBlanc, K. P. Koo, C. G. Askins, M. P. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

L. Talaverano, S. Abad, S. Jarabo, M. Lopez-Amo, “Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability,” J. Lightwave Technol. 19, 553–558 (2001).
[CrossRef]

Meas. Sci. Technol. (2)

Y. J. Rao, “In-fiber Bragg grating sensors,” Meas. Sci. Technol. 8, 355–375 (1997).
[CrossRef]

C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing,” Meas. Sci. Technol. 13, 1446–1449 (2002).
[CrossRef]

Opt. Eng. (2)

K. S. Chiang, “Temperature sensitivity of coated stress-induced birefringent optical fibers,” Opt. Eng. 36, 999–1007 (1997).
[CrossRef]

M. May-Alarcon, E. A. Kuzin, R. A. Vazuez-Sanchez, M. G. Shlyagin, I. Marquez-Borbon, “Multipoint fiber Bragg grating laser sensor interrogated by the intermodal beating frequency,” Opt. Eng. 42, 2246–2249 (2003).
[CrossRef]

Opt. Lett. (3)

Smart Mater. Struct. (1)

E. Chehura, C. C. Ye, S. E. Staines, S. W. James, R. P. Tatam, “Characterization of the response of fibre Bragg gratings fabricated in stress and geometrically induced high birefringence fibres to temperature and transverse load,” Smart Mater. Struct. 13, 888–895 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the FBG transverse-force sensing scheme, which is configured as a wavelength-switching mode-locked fiber laser: OC, optical circulator; WDM, wavelength-division multiplexer; IMG, index-matching gel; DAQ, data acquisition; LD, laser diode; other abbreviations defined in text. Inset, the force-applying apparatus.

Fig. 2
Fig. 2

Reflection spectrum of the FBG at an applied force of 29.4 N for (a) FBG 1 and (b) FBG 2. Dependence of the wavelength separation of the two reflection peaks from the FBG on the applied force for (c) FBG 1 and (d) FBG 2.

Fig. 3
Fig. 3

Spectral characteristics of the output pulses when the laser was mode locked at (a) λ1 and (b) λ2 and the corresponding waveforms at (c) λ1 and (d) λ2, respectively, and (e) after the pulses have traveled through an 18.1-km SMF. The applied force was 49.0 N.

Fig. 4
Fig. 4

Spectral characteristics of the output pulses with the laser mode locked at λ1 and λ2, respectively, when (a) the applied force was 29.7 N and when (b) no force was applied, and the waveforms of the pulses after they have traveled through an 18.1-km SMF when (c) the applied force was 29.7 N and when (d) no force was applied.

Fig. 5
Fig. 5

Output spectral characteristics when the laser was mode locked to (a) FBG 1 or (b) FBG 2 and (c) the waveforms of the output pulses after the pulses have traveled through an 18.1-km SMF when the laser was mode locked to FBG 2.

Fig. 6
Fig. 6

Dependence of the time difference between the pulses at the two wavelengths on the applied force for (a) FBG 1 and (b) FBG 2.

Fig. 7
Fig. 7

(a) Dependence of the time difference on the temperature for FBG 1 when the applied force was 29.7 N (circles) or 49 N (squares). (b) Dependence of the time difference on the axial strain for FBG 1 when the applied force was 29.7 N.

Metrics