Abstract

We describe a technique for the measurement of non-full-field reflective surfaces by using phase-stepping profilometry. We explain the principles of phase demodulation and discuss three-dimensional (3-D) height reconstruction in the case of measuring surfaces with reflective properties such as plain glass and mirrored glass. A number of required calibration algorithms are described to obtain surface slopes and reconstructed 3-D heights of the whole surface. Masking for non-full-field objects and the surface reconstruction procedure are demonstrated mathematically and algorithmically. Several experimental results are given for glass with different shapes and defects. Measurement of a spherical mirror with a known radius has also allowed us to show the performance of the proposed technique. This allows for the possibility to compare 3-D data from the known object with data taken from the measurement system.

© 2005 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional shape measurement of a highly reflected, specular surface with structured light method

Hongwei Zhang, Lishuan Ji, Shugui Liu, Shaohui Li, Shujian Han, and Xiaojie Zhang
Appl. Opt. 51(31) 7724-7732 (2012)

High-speed three-dimensional profilometry for multiple objects with complex shapes

Chao Zuo, Qian Chen, Guohua Gu, Shijie Feng, and Fangxiaoyu Feng
Opt. Express 20(17) 19493-19510 (2012)

Single-shot color fringe projection for three-dimensional shape measurement of objects with discontinuities

Meiling Dai, Fujun Yang, and Xiaoyuan He
Appl. Opt. 51(12) 2062-2069 (2012)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription