Abstract

We show experimentally, through autocorrelation and frequency-resolved optical gating measurements, that a simple dispersive fiber Bragg grating with group delay ripple ~10 ps peak-to-peak may be used effectively to stretch ultrashort optical pulses for linear amplification before recompression to a higher-power pulse. We further investigate, through simulations, the effect of group delay ripple on the pulses and show that there are regimes, defined by both ripple magnitude and ripple period as a function of wavelength, in which the pulses are nearly perfectly compressed. A map with contours of equal figures of merit indicates favorable regions of operation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56, 219–221 (1985).
    [CrossRef]
  2. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
    [CrossRef]
  3. N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, M. Ibsen, “High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
    [CrossRef]
  4. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11, 3332–3337 (2003).
    [CrossRef] [PubMed]
  5. C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
    [CrossRef]
  6. D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
    [CrossRef]
  7. A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
    [CrossRef]
  8. G. Imeshev, I. Hartl, M. E. Fermann, “Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor,” Opt. Lett. 29, 679–681 (2004).
    [CrossRef] [PubMed]
  9. S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
    [CrossRef]
  10. D. Garthe, G. Milner, Y. Cai, “System performance of broadband dispersion compensation gratings,” Electron. Lett. 34, 582–583 (1998).
    [CrossRef]
  11. S. Jamal, J. C. Cartledge, “Variation in the performance of multispan 10-Gb/s systems due to the group delay ripple of dispersion compensating fiber Bragg gratings,” J. Lightwave Technol. 20, 28–35 (2002).
    [CrossRef]
  12. C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).
  13. B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
    [CrossRef]
  14. J. F. Brennan, M. R. Matthews, P. G. Sinha, “The modulation transfer-function of chirped fiber Bragg gratings,” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Stresa, Italy, 2001), paper BThC21.
  15. H. Yoshimi, Y. Takushima, K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Presented at the European Conference on Optical Communication, Copenhagen, Denmark, 8–12 September 2002, paper 10.4.4.
  16. M. Eiselt, C. B. Clausen, R. W. Tkach, “Performance characterization of components with group delay fluctuations,” Presented at the Symposium on Optical Fiber Measurements (NIST, Boulder, Colo., 2002), Session III.
  17. K. Hinton, “Metrics for dispersion ripple in optical systems,” Opt. Fiber Technol. 10, 50–72 (2004).
    [CrossRef]
  18. X. Fan, D. L. LaBrake, J. F. Brennan, “Chirped fiber grating characterization with phase ripples,” in Proceedings of Opt. Fiber Commun. FC2, 2, 638–6402003.
  19. J. T. Mok, B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167–178 (2004).
    [CrossRef]
  20. J. T. Mok, J. L. Blows, B. J. Eggleton, “Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators,” Opt. Express 12, 4411–4422 (2004).
    [CrossRef] [PubMed]
  21. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett., 28, 777–779 (2003).
    [CrossRef] [PubMed]
  22. N. Matuschek, F. X. Kaertner, U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137 (1999).
    [CrossRef]
  23. G. Steinmeyer, “Dispersion oscillations in ultrafast phase-correction devices,” IEEE J. Quantum Electron. 39, 1027–1034 (2003).
    [CrossRef]
  24. J. M. Dudley, S. M. Boussen, D. M. J. Cameron, J. D. Harvey, “Complete characterization of a self-mode-locked Ti:sapphire laser in the vicinity of zero group-delay dispersion by frequency-resolved optical gating,” Appl. Opt. 38, 3308–3315 (1999).
    [CrossRef]

2004

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

G. Imeshev, I. Hartl, M. E. Fermann, “Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor,” Opt. Lett. 29, 679–681 (2004).
[CrossRef] [PubMed]

K. Hinton, “Metrics for dispersion ripple in optical systems,” Opt. Fiber Technol. 10, 50–72 (2004).
[CrossRef]

J. T. Mok, B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167–178 (2004).
[CrossRef]

J. T. Mok, J. L. Blows, B. J. Eggleton, “Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators,” Opt. Express 12, 4411–4422 (2004).
[CrossRef] [PubMed]

2003

2002

2000

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

S. J. Mihailov, F. Bilodeau, K. O. Hill, D. C. Johnson, J. Albert, A. S. Holmes, “Apodization technique for fiber grating fabrication with a halftone transmission amplitude mask,” Appl. Opt. 39, 3670–3677 (2000).
[CrossRef]

1999

1998

D. Garthe, G. Milner, Y. Cai, “System performance of broadband dispersion compensation gratings,” Electron. Lett. 34, 582–583 (1998).
[CrossRef]

1995

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

1985

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56, 219–221 (1985).
[CrossRef]

1969

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Ahuja, A.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Albert, J.

Bennion, I.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Bilodeau, F.

Blows, J. L.

Bohn, M.

C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).

Boussen, S. M.

Brennan, J. F.

X. Fan, D. L. LaBrake, J. F. Brennan, “Chirped fiber grating characterization with phase ripples,” in Proceedings of Opt. Fiber Commun. FC2, 2, 638–6402003.

J. F. Brennan, M. R. Matthews, P. G. Sinha, “The modulation transfer-function of chirped fiber Bragg gratings,” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Stresa, Italy, 2001), paper BThC21.

Broderick, N. G. R.

Broeng, J.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Cai, Y.

D. Garthe, G. Milner, Y. Cai, “System performance of broadband dispersion compensation gratings,” Electron. Lett. 34, 582–583 (1998).
[CrossRef]

Cameron, D. M. J.

Caplen, J. E.

Cartledge, J. C.

Clausen, C. B.

M. Eiselt, C. B. Clausen, R. W. Tkach, “Performance characterization of components with group delay fluctuations,” Presented at the Symposium on Optical Fiber Measurements (NIST, Boulder, Colo., 2002), Session III.

Cruz, J. L.

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

de Matos, C. J. S.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Deshmukh, R.

Dong, L.

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, M. Ibsen, “High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

Dudley, J. M.

Eggleton, B. J.

J. T. Mok, J. L. Blows, B. J. Eggleton, “Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators,” Opt. Express 12, 4411–4422 (2004).
[CrossRef] [PubMed]

J. T. Mok, B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167–178 (2004).
[CrossRef]

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett., 28, 777–779 (2003).
[CrossRef] [PubMed]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Eiselt, M.

M. Eiselt, C. B. Clausen, R. W. Tkach, “Performance characterization of components with group delay fluctuations,” Presented at the Symposium on Optical Fiber Measurements (NIST, Boulder, Colo., 2002), Session III.

Fan, X.

X. Fan, D. L. LaBrake, J. F. Brennan, “Chirped fiber grating characterization with phase ripples,” in Proceedings of Opt. Fiber Commun. FC2, 2, 638–6402003.

Fermann, M. E.

G. Imeshev, I. Hartl, M. E. Fermann, “Chirped pulse amplification with a nonlinearly chirped fiber Bragg grating matched to the Treacy compressor,” Opt. Lett. 29, 679–681 (2004).
[CrossRef] [PubMed]

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Fischer, G.

C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).

Galvanauskas, A.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Gapontsev, V. P.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Garthe, D.

D. Garthe, G. Milner, Y. Cai, “System performance of broadband dispersion compensation gratings,” Electron. Lett. 34, 582–583 (1998).
[CrossRef]

Glingener, C.

C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).

Hansen, T. P.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Harter, D.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Hartl, I.

Harvey, J. D.

Hill, K. O.

Hinton, K.

K. Hinton, “Metrics for dispersion ripple in optical systems,” Opt. Fiber Technol. 10, 50–72 (2004).
[CrossRef]

Holmes, A. S.

Ibsen, M.

Imeshev, G.

Jamal, S.

Johnson, D. C.

Kaertner, F. X.

N. Matuschek, F. X. Kaertner, U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137 (1999).
[CrossRef]

Keller, U.

N. Matuschek, F. X. Kaertner, U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137 (1999).
[CrossRef]

Kikuchi, K.

H. Yoshimi, Y. Takushima, K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Presented at the European Conference on Optical Communication, Copenhagen, Denmark, 8–12 September 2002, paper 10.4.4.

Kuo, P.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

LaBrake, D. L.

X. Fan, D. L. LaBrake, J. F. Brennan, “Chirped fiber grating characterization with phase ripples,” in Proceedings of Opt. Fiber Commun. FC2, 2, 638–6402003.

Li, Y.

Limpert, J.

Litchinitser, N. M.

Matthews, M. R.

J. F. Brennan, M. R. Matthews, P. G. Sinha, “The modulation transfer-function of chirped fiber Bragg gratings,” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Stresa, Italy, 2001), paper BThC21.

Matuschek, N.

N. Matuschek, F. X. Kaertner, U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137 (1999).
[CrossRef]

Mihailov, S. J.

Mikkelsen, B.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Milner, G.

D. Garthe, G. Milner, Y. Cai, “System performance of broadband dispersion compensation gratings,” Electron. Lett. 34, 582–583 (1998).
[CrossRef]

Mok, J. T.

J. T. Mok, B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167–178 (2004).
[CrossRef]

J. T. Mok, J. L. Blows, B. J. Eggleton, “Investigation of group delay ripple distorted signals transmitted through all-optical 2R regenerators,” Opt. Express 12, 4411–4422 (2004).
[CrossRef] [PubMed]

Mourou, G.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56, 219–221 (1985).
[CrossRef]

Nielsen, T. N.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Nolte, S.

Popov, S. V.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Reekie, L.

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

Reyes, P. I.

Richardson, D. J.

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, M. Ibsen, “High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

Rogers, J. A.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Rosenkranz, W.

C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).

Rulkov, A. B.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Schreiber, T.

Sheerer, C.

C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).

Sinha, P. G.

J. F. Brennan, M. R. Matthews, P. G. Sinha, “The modulation transfer-function of chirped fiber Bragg gratings,” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Stresa, Italy, 2001), paper BThC21.

Soccolich, C.

Steinmeyer, G.

G. Steinmeyer, “Dispersion oscillations in ultrafast phase-correction devices,” IEEE J. Quantum Electron. 39, 1027–1034 (2003).
[CrossRef]

Strickland, D.

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56, 219–221 (1985).
[CrossRef]

Sugden, K.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Sumetsky, M.

Takushima, Y.

H. Yoshimi, Y. Takushima, K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Presented at the European Conference on Optical Communication, Copenhagen, Denmark, 8–12 September 2002, paper 10.4.4.

Taverner, D.

N. G. R. Broderick, D. J. Richardson, D. Taverner, J. E. Caplen, L. Dong, M. Ibsen, “High-power chirped-pulse all-fiber amplification system based on large-mode-area fiber gratings,” Opt. Lett. 24, 566–568 (1999).
[CrossRef]

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

Taylor, J. R.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Tkach, R. W.

M. Eiselt, C. B. Clausen, R. W. Tkach, “Performance characterization of components with group delay fluctuations,” Presented at the Symposium on Optical Fiber Measurements (NIST, Boulder, Colo., 2002), Session III.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Tünnermann, A.

Westbrook, P. S.

M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, C. Soccolich, “Group-delay ripple correction in chirped fiber Bragg gratings,” Opt. Lett., 28, 777–779 (2003).
[CrossRef] [PubMed]

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Yoshimi, H.

H. Yoshimi, Y. Takushima, K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Presented at the European Conference on Optical Communication, Copenhagen, Denmark, 8–12 September 2002, paper 10.4.4.

Zellmer, H.

Zervas, M. N.

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Galvanauskas, M. E. Fermann, D. Harter, K. Sugden, I. Bennion, “All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings,” Appl. Phys. Lett. 66, 1053–1055 (1995).
[CrossRef]

Electron. Lett.

D. Garthe, G. Milner, Y. Cai, “System performance of broadband dispersion compensation gratings,” Electron. Lett. 34, 582–583 (1998).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

N. Matuschek, F. X. Kaertner, U. Keller, “Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics,” IEEE J. Quantum Electron. 35, 129–137 (1999).
[CrossRef]

G. Steinmeyer, “Dispersion oscillations in ultrafast phase-correction devices,” IEEE J. Quantum Electron. 39, 1027–1034 (2003).
[CrossRef]

J. Lightwave Technol.

J. Lighwave Technol.

B. J. Eggleton, A. Ahuja, P. S. Westbrook, J. A. Rogers, P. Kuo, T. N. Nielsen, B. Mikkelsen, “Integrated tunable fiber gratings for dispersion management in high-bit rate systems,” J. Lighwave Technol. 18, 1418–1432 (2000).
[CrossRef]

Opt. Commun.

J. T. Mok, B. J. Eggleton, “Impact of group delay ripple on repetition-rate multiplication through Talbot self-imaging effect,” Opt. Commun. 232, 167–178 (2004).
[CrossRef]

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun., 56, 219–221 (1985).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

K. Hinton, “Metrics for dispersion ripple in optical systems,” Opt. Fiber Technol. 10, 50–72 (2004).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

C. J. S. de Matos, S. V. Popov, A. B. Rulkov, J. R. Taylor, J. Broeng, T. P. Hansen, V. P. Gapontsev, “All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers,” Phys. Rev. Lett. 93, 1–4 (2004).
[CrossRef]

Other

D. Taverner, D. J. Richardson, M. N. Zervas, L. Reekie, L. Dong, J. L. Cruz, “Investigation of fiber grating-based performance limits in pulse stretching and recompression schemes using bidirectional reflection from a linearly chirped fiber grating,” IEEE Photon. Technol. Lett.7, 1436–1438 (1995).
[CrossRef]

C. Sheerer, C. Glingener, G. Fischer, M. Bohn, W. Rosenkranz, “Influence of filter group delay ripples on system performance,” in Proceeding of the 25th European Conference on Optical Communications, Societe des Electriciens et des Electroniciens, 1410–1411, France (1999).

X. Fan, D. L. LaBrake, J. F. Brennan, “Chirped fiber grating characterization with phase ripples,” in Proceedings of Opt. Fiber Commun. FC2, 2, 638–6402003.

J. F. Brennan, M. R. Matthews, P. G. Sinha, “The modulation transfer-function of chirped fiber Bragg gratings,” presented at Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (Stresa, Italy, 2001), paper BThC21.

H. Yoshimi, Y. Takushima, K. Kikuchi, “A simple method for estimating the eye-opening penalty caused by group-delay ripple of optical filters,” Presented at the European Conference on Optical Communication, Copenhagen, Denmark, 8–12 September 2002, paper 10.4.4.

M. Eiselt, C. B. Clausen, R. W. Tkach, “Performance characterization of components with group delay fluctuations,” Presented at the Symposium on Optical Fiber Measurements (NIST, Boulder, Colo., 2002), Session III.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic showing the two schemes, (a) FBG pair and (b) FBG and bulk grating pair, for the pulse stretching and compression demonstrated in this paper.

Fig. 2
Fig. 2

Typical group delay and intensity spectrum of a FBG used to stretch the pulse compared with the spectrum of a 1.7 ps duration Gaussian pulse. The group delay is on the right-hand axis and the grating reflectivity is plotted on the left. Here D2 = −11.5 ps/nm and ΔλBW = 6 nm.

Fig. 3
Fig. 3

Normalized autocorrelation traces for the initial pulse, the stretched pulsed, and the recompressed pulse using a FBG. Note the slight asymmetry of the stretched pulse caused by the limited range of the autocorrelator. The spectra are for (a) laser output and (b) after the amplifier and the recompression grating.

Fig. 4
Fig. 4

Normalized recompressed pulse autocorrelation trace compared with the initial pulse for each of (a) using a FBG and (b) using a bulk grating pair as the recompression stage.

Fig. 5
Fig. 5

Time-resolved raw spectrograms taken with a FROG system. Initial pulse (top), spectrogram of the stretched pulse (middle), and spectrogram of the pulse after recompression with a FBG with dispersion matched to be opposite in sign to the stretch FBG (bottom).

Fig. 6
Fig. 6

Time evolution of the phase of the pulse both (a) before and after compression using both (b) the bulk grating pair and (c) the matched FBG. The time evolution of the pulse intensity is shown for comparison. Note that the recompressed pulse deviates from the initial pulse at the leading and trailing pulse tails because of an imperfect matching of the dispersion of the bulk grating pair by the FBG.

Fig. 7
Fig. 7

Temporal profile of the pulse after interaction with a sinusoidally varying group delay. The inset shows relativity between pulse spectrum and ripple. The peak-to-peak amplitude of the ripple is constant at 20 ps, while the period is varied from (a) FWHM/10 through (b) FWHM/5 to (c) FWHM/2.5 and finally, (d) FWHM/1.25. The various satellite pulses are denoted ±1 and ±2 to denote the scattered order in a way analogous to phase modulation.

Fig. 8
Fig. 8

Relationship of ripple to the pulse spectrum when the period = 2× FWHM or 3.9 nm. The phase relative to the center of the spectrum is 0° and (b) 90°.

Fig. 9
Fig. 9

Temporal pulse profile for various ripple periods and two different phases. The ripple period is greater than or equal to the FWHM of the pulse spectrum. For traces (a)–(d) the phase is 0° [c.f. Fig. 8(a)] and the period is increased from 1× to 8× FWHM, whereas for traces (e)–(h) the phase is 90° [c.f. Fig. 8(b)], and the period once again varies from 1× to 8× FWHM.

Fig. 10
Fig. 10

Temporal pulse profile for the case where the ripple period is 20% of the pulse spectral FWHM, i.e., 0.39 nm. The linear dispersion is increased from 0 ps/nm in (a) to −9 ps/nm in (d) in steps of −3 ps/nm.

Fig. 11
Fig. 11

(a) GDR compared with the pulse spectrum and (b) the Fourier spectrum of the GDR. The dominant Fourier components are at 2.5 and 5 cycles/nm, falling off toward lower and higher frequencies.

Fig. 12
Fig. 12

(a) Phase ripple as a function of wavelength compared with the pulse spectrum. (b) The windowed phase ripple indicates how the ripple will affect the pulse.

Fig. 13
Fig. 13

Simulation obtained using data from the real FBG (Fig. 2) as the stretch stage. (a) Original pulse along with the recompressed pulse. (b) Scale used in (a) has been magnified 10× to reveal the satellite pulses caused by the ripple. (c) Pulse shown on a different time scale but with a linear vertical scale. (d) The vertical scale is logarithmic to expose the satellite pulses, which are significantly below the central peak.

Fig. 14
Fig. 14

Contour maps showing lines of peak power as a figure of merit for each phase of two phases of the group delay ripple: (a) ϕ = 0° and (b) ϕ = 90°. The labels indicate the peak intensity relative to the input pulse as a percentage. The horizontal dimension is the group delay peak-to-peak amplitude in picoseconds and the vertical dimension is proportional to the ripple frequency; the ratio of the spectral width of the pulse to the ripple period. The solid gray section indicates a region of either pulses unusable because of multiple satellites or of widely dispersed pulse. The completely unshaded section shows the parameter region for very suitable pulses.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = exp [ - ( 1 2 2 t Δ τ ) 2 ] ,
I ( λ ) = exp [ - ( 1 2 2 λ Δ λ ) 2 ] ,
θ ( λ ) = - 2 π c λ C 2 Δ τ G ( λ ) d λ ,
Δ τ G ( λ ) = D 1 + D 2 λ .
θ ( λ ) = - π c λ C 2 D 2 λ 2 .
Δ τ G ( λ ) = 0.5 Δ τ max sin ( 2 π λ P + ϕ ) ,
θ ( λ ) = - 1 2 c λ C 2 Δ τ max P cos ( 2 π λ P + ϕ ) .
Δ τ Sat = λ 2 c 1 Δ λ GDR .
Δ τ Dis = D 2 Δ λ BW .
D 2 1 2 λ 2 c Δ λ GDR Δ λ BW .

Metrics