Abstract

A new optical particle counter was developed to provide fast in situ sizing of cloud droplets in the Leipzig Aerosol and Cloud Interaction Simulator (LACIS). The new instrument features white light for the illumination of the sampling volume: two off-axis elliptical mirrors, providing a wide angle of collection for light scattered by particles; and an optically defined sampling volume. The smooth unambiguous response characteristic for water droplets allows direct conversion of the measured signal amplitudes into droplet diameters. Preliminary response measurements for dry polystyrol microspheres and water droplets, grown in the LACIS on NaCl particles, have shown good agreement with the corresponding calculated response curves.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. O. Knutson, K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol Sci. 6, 443–451 (1975).
    [CrossRef]
  2. B. Y. H. Liu, W. W. Szymanski, K.-H. Ahn, “On aerosol size distribution measurement by laser and white light optical particle counters,” J. Environ. Sci. 3, 19–24 (1985).
  3. R. G. Pinnick, J. D. Pendleton, G. Videen, “Response characteristics of the particle measuring systems active scattering spectrometer probes,” Aerosol Sci. Technol. 33, 334–352 (2000).
    [CrossRef]
  4. D. D. Cooke, M. Kerker, “Response calculations for light-scattering aerosol particle counters,” Appl. Opt. 14, 734–739 (1975).
    [CrossRef] [PubMed]
  5. A. V. Korolev, J. W. Strapp, G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmos. Oceanic Technol. 15, 708–720 (1998).
    [CrossRef]
  6. B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
    [CrossRef]
  7. Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
    [CrossRef]
  8. P. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
    [CrossRef]
  9. M. Bartholdi, G. C. Salzman, R. D. Heibert, M. Kerker, “Differential light scattering photometer for rapid analysis of single particles in flow,” Appl. Opt. 19, 1573–1581 (1980).
    [CrossRef] [PubMed]
  10. J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
    [CrossRef]
  11. O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
    [CrossRef]
  12. D. J. Rader, T. J. O’Hern, “Optical direct-reading techniques: in situ sensing,” in Aerosol Measurement: Principles, Techniques and Applications, K. Willeke, P. A. Born, eds. (Van Nostrand Reinhold, 1993), pp. 345–380.
  13. G. Göbel, T. Wriedt, K. Bauckhage, “Micron and submicron aerosol sizing with a standard phase-doppler anemometer,” J. Aerosol Sci. 29, 1063–1073 (1998).
    [CrossRef]
  14. M. Kerker, “Light scattering instrumentation for aerosol studies: an historical overview,” Aerosol Sci. Technol. 27, 522–540 (1997).
    [CrossRef]
  15. H. Umhauer, “Particle-size distribution analysis by scattered-light measurements using an optically defined measuring volume,” J. Aerosol Sci. 14, 765–770 (1983).
    [CrossRef]
  16. F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
    [CrossRef]
  17. FLUENT 6 Users Guide (Fluent Inc., 2001).
  18. M. Wilck, F. Stratmann, E. R. Whitby, “A fine particle model for FLUENT: description and application,” in Proceedings of the Sixth International Aerosol Conference (Taipei, 2002), pp. 1269–1270.
  19. B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
    [CrossRef]
  20. R. Friehmelt, S. Heidenreich, “Calibration of a white-light/90 degrees optical particle counter for ‘aerodynamic’ size measurements—experiments and calculations for spherical particles and quartz dust,” J. Aerosol Sci. 30, 1271–1279 (1999).
    [CrossRef]
  21. V. Kustov, D. Markov, D. Mehrl, “Optical particle-sizing method that provides optical isolation of the sampling volume,” Appl. Opt. 38, 2698–2705 (1999).
    [CrossRef]
  22. S. Schmidt, K. Lehmann, M. Wendisch, “Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP,” J. Atmos. Oceanic Technol. 21, 1855–1867 (2004).
    [CrossRef]
  23. J.-L. Brenguier, L. Amodei, “Concidence and dead-time corrections for particle counters. Part I: A general mathematical formalism,” J. Atmos. Oceanic Technol. 6, 575–584 (1989).
    [CrossRef]
  24. S. Lekhtmakher, M. Shapiro, “Registration probabilities and pulse-height distributions of coincidences in optical particle counters,” Aerosol Sci. Technol. 38, 155–164 (2004).
    [CrossRef]
  25. A. Stelson, “Urban aerosol refractive index prediction by partial molar refraction approach,” Environ. Sci. Technol. 24, 1676–1679 (1990).
    [CrossRef]
  26. I. N. Tang, “Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance,” J. Geophys. Res. 102, 1883–1893 (1997).
    [CrossRef]
  27. J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).
  28. R. G. Pinnick, F. J. Hofmann, “Efficiency of light-scattering aerosol particle counters,” Appl. Opt. 12, 2593–2597 (1973).
    [CrossRef] [PubMed]
  29. A. Anselm, J. Gebhart, J. Heyder, “Interpretation of response functions of optical particle counters in terms of classical optics,” J. Aerosol Sci. 18, 873–876 (1987).
    [CrossRef]
  30. W. C. Hinds, G. Kraske, “Performance of PMS model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
    [CrossRef]
  31. W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
    [CrossRef]
  32. J. Heyder, J. Gebhart, “Optimization of response functions of light scattering instruments for size evaluation of aerosol particles,” Appl. Opt. 18, 705–711 (1979).
    [CrossRef] [PubMed]
  33. C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  34. I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101 D, 19245–19250 (1996).
    [CrossRef]
  35. H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

2004 (3)

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

S. Schmidt, K. Lehmann, M. Wendisch, “Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP,” J. Atmos. Oceanic Technol. 21, 1855–1867 (2004).
[CrossRef]

S. Lekhtmakher, M. Shapiro, “Registration probabilities and pulse-height distributions of coincidences in optical particle counters,” Aerosol Sci. Technol. 38, 155–164 (2004).
[CrossRef]

2000 (3)

W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
[CrossRef]

R. G. Pinnick, J. D. Pendleton, G. Videen, “Response characteristics of the particle measuring systems active scattering spectrometer probes,” Aerosol Sci. Technol. 33, 334–352 (2000).
[CrossRef]

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

1999 (3)

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

R. Friehmelt, S. Heidenreich, “Calibration of a white-light/90 degrees optical particle counter for ‘aerodynamic’ size measurements—experiments and calculations for spherical particles and quartz dust,” J. Aerosol Sci. 30, 1271–1279 (1999).
[CrossRef]

V. Kustov, D. Markov, D. Mehrl, “Optical particle-sizing method that provides optical isolation of the sampling volume,” Appl. Opt. 38, 2698–2705 (1999).
[CrossRef]

1998 (4)

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

G. Göbel, T. Wriedt, K. Bauckhage, “Micron and submicron aerosol sizing with a standard phase-doppler anemometer,” J. Aerosol Sci. 29, 1063–1073 (1998).
[CrossRef]

P. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

A. V. Korolev, J. W. Strapp, G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmos. Oceanic Technol. 15, 708–720 (1998).
[CrossRef]

1997 (4)

J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
[CrossRef]

O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
[CrossRef]

M. Kerker, “Light scattering instrumentation for aerosol studies: an historical overview,” Aerosol Sci. Technol. 27, 522–540 (1997).
[CrossRef]

I. N. Tang, “Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance,” J. Geophys. Res. 102, 1883–1893 (1997).
[CrossRef]

1996 (1)

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101 D, 19245–19250 (1996).
[CrossRef]

1990 (1)

A. Stelson, “Urban aerosol refractive index prediction by partial molar refraction approach,” Environ. Sci. Technol. 24, 1676–1679 (1990).
[CrossRef]

1989 (1)

J.-L. Brenguier, L. Amodei, “Concidence and dead-time corrections for particle counters. Part I: A general mathematical formalism,” J. Atmos. Oceanic Technol. 6, 575–584 (1989).
[CrossRef]

1987 (1)

A. Anselm, J. Gebhart, J. Heyder, “Interpretation of response functions of optical particle counters in terms of classical optics,” J. Aerosol Sci. 18, 873–876 (1987).
[CrossRef]

1986 (1)

W. C. Hinds, G. Kraske, “Performance of PMS model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

1985 (1)

B. Y. H. Liu, W. W. Szymanski, K.-H. Ahn, “On aerosol size distribution measurement by laser and white light optical particle counters,” J. Environ. Sci. 3, 19–24 (1985).

1983 (1)

H. Umhauer, “Particle-size distribution analysis by scattered-light measurements using an optically defined measuring volume,” J. Aerosol Sci. 14, 765–770 (1983).
[CrossRef]

1980 (1)

1979 (1)

1975 (2)

D. D. Cooke, M. Kerker, “Response calculations for light-scattering aerosol particle counters,” Appl. Opt. 14, 734–739 (1975).
[CrossRef] [PubMed]

E. O. Knutson, K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol Sci. 6, 443–451 (1975).
[CrossRef]

1973 (1)

Ahn, K.-H.

B. Y. H. Liu, W. W. Szymanski, K.-H. Ahn, “On aerosol size distribution measurement by laser and white light optical particle counters,” J. Environ. Sci. 3, 19–24 (1985).

Amodei, L.

J.-L. Brenguier, L. Amodei, “Concidence and dead-time corrections for particle counters. Part I: A general mathematical formalism,” J. Atmos. Oceanic Technol. 6, 575–584 (1989).
[CrossRef]

Anselm, A.

A. Anselm, J. Gebhart, J. Heyder, “Interpretation of response functions of optical particle counters in terms of classical optics,” J. Aerosol Sci. 18, 873–876 (1987).
[CrossRef]

Barthel, H.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Bartholdi, M.

Bauckhage, K.

G. Göbel, T. Wriedt, K. Bauckhage, “Micron and submicron aerosol sizing with a standard phase-doppler anemometer,” J. Aerosol Sci. 29, 1063–1073 (1998).
[CrossRef]

Bohren, C. F.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brenguier, J.-L.

J.-L. Brenguier, L. Amodei, “Concidence and dead-time corrections for particle counters. Part I: A general mathematical formalism,” J. Atmos. Oceanic Technol. 6, 575–584 (1989).
[CrossRef]

Buttner, H.

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

Büttner, H.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Charlson, R. J.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

Ciach, T.

W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
[CrossRef]

Cooke, D. D.

Crépel, O.

O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
[CrossRef]

J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
[CrossRef]

De Smet, J.

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

Diehl, K.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

Ebert, F.

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

Fournol, J. F.

J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
[CrossRef]

Fournol, J.-F.

O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
[CrossRef]

Friehmelt, R.

R. Friehmelt, S. Heidenreich, “Calibration of a white-light/90 degrees optical particle counter for ‘aerodynamic’ size measurements—experiments and calculations for spherical particles and quartz dust,” J. Aerosol Sci. 30, 1271–1279 (1999).
[CrossRef]

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

Gayet, J. F.

J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
[CrossRef]

Gayet, J.-F.

O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
[CrossRef]

Gebhart, J.

A. Anselm, J. Gebhart, J. Heyder, “Interpretation of response functions of optical particle counters in terms of classical optics,” J. Aerosol Sci. 18, 873–876 (1987).
[CrossRef]

J. Heyder, J. Gebhart, “Optimization of response functions of light scattering instruments for size evaluation of aerosol particles,” Appl. Opt. 18, 705–711 (1979).
[CrossRef] [PubMed]

Göbel, G.

G. Göbel, T. Wriedt, K. Bauckhage, “Micron and submicron aerosol sizing with a standard phase-doppler anemometer,” J. Aerosol Sci. 29, 1063–1073 (1998).
[CrossRef]

Gradon, L.

W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
[CrossRef]

Heffels, C.

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

Heibert, R. D.

Heidenreich, S.

R. Friehmelt, S. Heidenreich, “Calibration of a white-light/90 degrees optical particle counter for ‘aerodynamic’ size measurements—experiments and calculations for spherical particles and quartz dust,” J. Aerosol Sci. 30, 1271–1279 (1999).
[CrossRef]

Heintzenberg, J.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

Heyder, J.

A. Anselm, J. Gebhart, J. Heyder, “Interpretation of response functions of optical particle counters in terms of classical optics,” J. Aerosol Sci. 18, 873–876 (1987).
[CrossRef]

J. Heyder, J. Gebhart, “Optimization of response functions of light scattering instruments for size evaluation of aerosol particles,” Appl. Opt. 18, 705–711 (1979).
[CrossRef] [PubMed]

Hinds, W. C.

W. C. Hinds, G. Kraske, “Performance of PMS model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

Hofmann, F. J.

Huffmann, D. R.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Isaac, G. A.

A. V. Korolev, J. W. Strapp, G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmos. Oceanic Technol. 15, 708–720 (1998).
[CrossRef]

Kaye, P.

P. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

Kerker, M.

Kiselev, A.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

Knutson, E. O.

E. O. Knutson, K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol Sci. 6, 443–451 (1975).
[CrossRef]

Korolev, A. V.

A. V. Korolev, J. W. Strapp, G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmos. Oceanic Technol. 15, 708–720 (1998).
[CrossRef]

Kraske, G.

W. C. Hinds, G. Kraske, “Performance of PMS model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

Kustov, V.

Lehmann, K.

S. Schmidt, K. Lehmann, M. Wendisch, “Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP,” J. Atmos. Oceanic Technol. 21, 1855–1867 (2004).
[CrossRef]

Lekhtmakher, S.

S. Lekhtmakher, M. Shapiro, “Registration probabilities and pulse-height distributions of coincidences in optical particle counters,” Aerosol Sci. Technol. 38, 155–164 (2004).
[CrossRef]

Liu, B. Y. H.

B. Y. H. Liu, W. W. Szymanski, K.-H. Ahn, “On aerosol size distribution measurement by laser and white light optical particle counters,” J. Environ. Sci. 3, 19–24 (1985).

Ma, Z.

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

Markov, D.

Mehrl, D.

Merkus, H.

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

O’Hern, T. J.

D. J. Rader, T. J. O’Hern, “Optical direct-reading techniques: in situ sensing,” in Aerosol Measurement: Principles, Techniques and Applications, K. Willeke, P. A. Born, eds. (Van Nostrand Reinhold, 1993), pp. 345–380.

Oshchepkov, S.

J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
[CrossRef]

O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
[CrossRef]

Pandis, S. N.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

Pendleton, J. D.

R. G. Pinnick, J. D. Pendleton, G. Videen, “Response characteristics of the particle measuring systems active scattering spectrometer probes,” Aerosol Sci. Technol. 33, 334–352 (2000).
[CrossRef]

Pinnick, R. G.

R. G. Pinnick, J. D. Pendleton, G. Videen, “Response characteristics of the particle measuring systems active scattering spectrometer probes,” Aerosol Sci. Technol. 33, 334–352 (2000).
[CrossRef]

R. G. Pinnick, F. J. Hofmann, “Efficiency of light-scattering aerosol particle counters,” Appl. Opt. 12, 2593–2597 (1973).
[CrossRef] [PubMed]

Podgorski, A.

W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
[CrossRef]

Polke, R.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

Rader, D. J.

D. J. Rader, T. J. O’Hern, “Optical direct-reading techniques: in situ sensing,” in Aerosol Measurement: Principles, Techniques and Applications, K. Willeke, P. A. Born, eds. (Van Nostrand Reinhold, 1993), pp. 345–380.

Sachweh, B.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

Salzman, G. C.

Scarlett, B.

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

Schmidt, S.

S. Schmidt, K. Lehmann, M. Wendisch, “Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP,” J. Atmos. Oceanic Technol. 21, 1855–1867 (2004).
[CrossRef]

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

Seinfeld, J. H.

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

Shapiro, M.

S. Lekhtmakher, M. Shapiro, “Registration probabilities and pulse-height distributions of coincidences in optical particle counters,” Aerosol Sci. Technol. 38, 155–164 (2004).
[CrossRef]

Stelson, A.

A. Stelson, “Urban aerosol refractive index prediction by partial molar refraction approach,” Environ. Sci. Technol. 24, 1676–1679 (1990).
[CrossRef]

Strapp, J. W.

A. V. Korolev, J. W. Strapp, G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmos. Oceanic Technol. 15, 708–720 (1998).
[CrossRef]

Stratmann, F.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

M. Wilck, F. Stratmann, E. R. Whitby, “A fine particle model for FLUENT: description and application,” in Proceedings of the Sixth International Aerosol Conference (Taipei, 2002), pp. 1269–1270.

Szymanski, W. W.

W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
[CrossRef]

B. Y. H. Liu, W. W. Szymanski, K.-H. Ahn, “On aerosol size distribution measurement by laser and white light optical particle counters,” J. Environ. Sci. 3, 19–24 (1985).

Tang, I. N.

I. N. Tang, “Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance,” J. Geophys. Res. 102, 1883–1893 (1997).
[CrossRef]

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101 D, 19245–19250 (1996).
[CrossRef]

Umhauer, H.

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

H. Umhauer, “Particle-size distribution analysis by scattered-light measurements using an optically defined measuring volume,” J. Aerosol Sci. 14, 765–770 (1983).
[CrossRef]

Videen, G.

R. G. Pinnick, J. D. Pendleton, G. Videen, “Response characteristics of the particle measuring systems active scattering spectrometer probes,” Aerosol Sci. Technol. 33, 334–352 (2000).
[CrossRef]

Wendisch, M.

S. Schmidt, K. Lehmann, M. Wendisch, “Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP,” J. Atmos. Oceanic Technol. 21, 1855–1867 (2004).
[CrossRef]

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

Wex, H.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

Whitby, E. R.

M. Wilck, F. Stratmann, E. R. Whitby, “A fine particle model for FLUENT: description and application,” in Proceedings of the Sixth International Aerosol Conference (Taipei, 2002), pp. 1269–1270.

Whitby, K. T.

E. O. Knutson, K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol Sci. 6, 443–451 (1975).
[CrossRef]

Wilck, M.

M. Wilck, F. Stratmann, E. R. Whitby, “A fine particle model for FLUENT: description and application,” in Proceedings of the Sixth International Aerosol Conference (Taipei, 2002), pp. 1269–1270.

Wriedt, T.

G. Göbel, T. Wriedt, K. Bauckhage, “Micron and submicron aerosol sizing with a standard phase-doppler anemometer,” J. Aerosol Sci. 29, 1063–1073 (1998).
[CrossRef]

Wurzler, S.

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

Zoboki, J.

H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

Aerosol Sci. Technol. (3)

R. G. Pinnick, J. D. Pendleton, G. Videen, “Response characteristics of the particle measuring systems active scattering spectrometer probes,” Aerosol Sci. Technol. 33, 334–352 (2000).
[CrossRef]

M. Kerker, “Light scattering instrumentation for aerosol studies: an historical overview,” Aerosol Sci. Technol. 27, 522–540 (1997).
[CrossRef]

S. Lekhtmakher, M. Shapiro, “Registration probabilities and pulse-height distributions of coincidences in optical particle counters,” Aerosol Sci. Technol. 38, 155–164 (2004).
[CrossRef]

Ann. Geophys. (2)

J. F. Gayet, O. Crépel, J. F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design,” Ann. Geophys. 15, 451–459 (1997).
[CrossRef]

O. Crépel, J.-F. Gayet, J.-F. Fournol, S. Oshchepkov, “A new airborne polar nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests,” Ann. Geophys. 15, 460–470 (1997).
[CrossRef]

Appl. Opt. (5)

Environ. Sci. Technol. (1)

A. Stelson, “Urban aerosol refractive index prediction by partial molar refraction approach,” Environ. Sci. Technol. 24, 1676–1679 (1990).
[CrossRef]

J. Aerosol Sci. (8)

A. Anselm, J. Gebhart, J. Heyder, “Interpretation of response functions of optical particle counters in terms of classical optics,” J. Aerosol Sci. 18, 873–876 (1987).
[CrossRef]

W. C. Hinds, G. Kraske, “Performance of PMS model LAS-X optical particle counter,” J. Aerosol Sci. 17, 67–72 (1986).
[CrossRef]

G. Göbel, T. Wriedt, K. Bauckhage, “Micron and submicron aerosol sizing with a standard phase-doppler anemometer,” J. Aerosol Sci. 29, 1063–1073 (1998).
[CrossRef]

B. Sachweh, H. Barthel, R. Polke, H. Umhauer, H. Büttner, “Particle shape and structure analysis from the spatial intensity pattern of scattered light using different measuring devices,” J. Aerosol Sci. 30, 1257–1270 (1999).
[CrossRef]

E. O. Knutson, K. T. Whitby, “Aerosol classification by electric mobility: apparatus, theory, and applications,” J. Aerosol Sci. 6, 443–451 (1975).
[CrossRef]

H. Umhauer, “Particle-size distribution analysis by scattered-light measurements using an optically defined measuring volume,” J. Aerosol Sci. 14, 765–770 (1983).
[CrossRef]

B. Sachweh, H. Umhauer, F. Ebert, H. Buttner, R. Friehmelt, “In situ optical particle counter with improved coincidence error correction for number concentrations up to 107particles cm−3,” J. Aerosol Sci. 29, 1075–1086 (1998).
[CrossRef]

R. Friehmelt, S. Heidenreich, “Calibration of a white-light/90 degrees optical particle counter for ‘aerodynamic’ size measurements—experiments and calculations for spherical particles and quartz dust,” J. Aerosol Sci. 30, 1271–1279 (1999).
[CrossRef]

J. Atmos. Oceanic Technol. (4)

S. Schmidt, K. Lehmann, M. Wendisch, “Minimizing instrumental broadening of the drop size distribution with the M-Fast-FSSP,” J. Atmos. Oceanic Technol. 21, 1855–1867 (2004).
[CrossRef]

J.-L. Brenguier, L. Amodei, “Concidence and dead-time corrections for particle counters. Part I: A general mathematical formalism,” J. Atmos. Oceanic Technol. 6, 575–584 (1989).
[CrossRef]

F. Stratmann, A. Kiselev, S. Wurzler, M. Wendisch, J. Heintzenberg, R. J. Charlson, K. Diehl, H. Wex, S. Schmidt, “Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions,” J. Atmos. Oceanic Technol. 21, 876–887 (2004).
[CrossRef]

A. V. Korolev, J. W. Strapp, G. A. Isaac, “Evaluation of the accuracy of PMS optical array probes,” J. Atmos. Oceanic Technol. 15, 708–720 (1998).
[CrossRef]

J. Environ. Sci. (1)

B. Y. H. Liu, W. W. Szymanski, K.-H. Ahn, “On aerosol size distribution measurement by laser and white light optical particle counters,” J. Environ. Sci. 3, 19–24 (1985).

J. Geophys. Res. (2)

I. N. Tang, “Chemical and size effects of hygroscopic aerosols on light scattering coefficients,” J. Geophys. Res. 101 D, 19245–19250 (1996).
[CrossRef]

I. N. Tang, “Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance,” J. Geophys. Res. 102, 1883–1893 (1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

W. W. Szymanski, T. Ciach, A. Podgorski, L. Gradon, “Optimized response characteristics of an optical particle spectrometer for size measurement of aerosols,” J. Quant. Spectrosc. Radiat. Transfer 64, 75–86 (2000).
[CrossRef]

Meas. Sci. Technol. (1)

P. Kaye, “Spatial light-scattering analysis as a means of characterizing and classifying non-spherical particles,” Meas. Sci. Technol. 9, 141–149 (1998).
[CrossRef]

Powder Technol. (1)

Z. Ma, H. Merkus, J. De Smet, C. Heffels, B. Scarlett, “New developments in particle characterization by laser diffraction: size and shape,” Powder Technol. 111, 66–78 (2000).
[CrossRef]

Other (6)

D. J. Rader, T. J. O’Hern, “Optical direct-reading techniques: in situ sensing,” in Aerosol Measurement: Principles, Techniques and Applications, K. Willeke, P. A. Born, eds. (Van Nostrand Reinhold, 1993), pp. 345–380.

FLUENT 6 Users Guide (Fluent Inc., 2001).

M. Wilck, F. Stratmann, E. R. Whitby, “A fine particle model for FLUENT: description and application,” in Proceedings of the Sixth International Aerosol Conference (Taipei, 2002), pp. 1269–1270.

H. Wex, A. Kiselev, F. Stratmann, J. Zoboki, J. Heintzenberg, “Measured and modeled equilibrium sizes of NaCl and (NH4)2 SO4 particles,” J. Geophys. Res., submitted.

C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. H. Seinfeld, S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

General design of the LACIS OPC, side view.

Fig. 2
Fig. 2

Optical layout of the LACIS OPC, top view.

Fig. 3
Fig. 3

Geometry of the sampling volume.

Fig. 4
Fig. 4

Spectral characteristics of the optical system used in the calculation of the response function. ●●●●, PMT spectral response; ---, spectrum of illuminating light; —, overall spectral transfer function of the LACIS OPC.

Fig. 5
Fig. 5

Theoretical response characteristics for PSL microspheres and water droplets, grown on the 200 nm NaCl seed particles.

Fig. 6
Fig. 6

Determination of the calibration constant K. The nominal sizes of the PSL microspheres that were used in the calculations are given in the text.

Fig. 7
Fig. 7

Predicted response characteristics and measured response signals for PSL microspheres and water droplets grown on NaCl seed particles. ■, Measured response signals for PSL spheres;—, theoretical response curve for PSL spheres (m = 1.59); ---, response curve for a water solution of NaCl; ○, measured response signals for water droplets grown on the NaCl seed particles (dry diameter of 185 nm); ▲, measured response signals for water droplets grown on the NaCl seed particles (dry diameter of 100 nm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = 1 - exp ( - n t ) ,
f c = F ( τ ) = 1 - exp ( - V N ) ,
R ( d , m ) = K 4 π 2 Λ Θ Φ I ( d , λ , m , θ ) λ 2 g ( λ ) × sin θ d λ d θ d ϕ ,

Metrics