Abstract

We have studied Er3+, Yb3+, and Ce3+ codoped microchannel waveguides that were developed by two methods: ionic exchange for heavy metal fluoride glasses [ZrF4–BaF2–AlF3–CeF3 (ZBAC)] and vapor phase deposition for transition metal fluoride glasses [PbF2–ZnF2–GaF3 (PZG)] by using a double-pass technique. For the first time to our knowledge, the measurement of propagation losses and amplification tests were carried out by use of the same experimental setup, leading to complete characterization of the waveguides. Net gains higher than 1 dB/cm were achieved in ZBAC Er/Ce single-mode fluoride glass waveguides.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287, 401–404 (2001).
    [CrossRef]
  2. D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
    [CrossRef]
  3. R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
    [CrossRef]
  4. P. J. Brannon, “Improved method of measuring optical waveguide propagation losses,” Appl. Opt. 25, 3596–3597 (1986).
    [CrossRef] [PubMed]
  5. H. Haquin, G. Fonteneau, J.-L. Adam, “Recent developments in ion-exchanged fluoride glass planar waveguides,” J. Non-Cryst. Solids 326–327, 460–463 (2003).
    [CrossRef]
  6. E. Josse, G. Fonteneau, J. Lucas, “Low-phonon waveguides made by F−/Cl− exchange on fluoride glasses,” Mater. Res. Bull. 32, 1139–1146 (1997).
    [CrossRef]
  7. I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
    [CrossRef]
  8. B. Boulard, Y. Gao, “Vapor phase deposition of multicomponent fluoride glasses,” C. R. Chim. 5, 675–678 (2002).
    [CrossRef]
  9. Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
    [CrossRef]
  10. T. A. Strasser, M. C. Gupta, “Optical loss measurement of low-loss thin-film waveguides by photographic analysis,” Appl. Opt. 31, 2041–2046 (1992).
    [CrossRef] [PubMed]
  11. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
    [CrossRef]

2003 (2)

H. Haquin, G. Fonteneau, J.-L. Adam, “Recent developments in ion-exchanged fluoride glass planar waveguides,” J. Non-Cryst. Solids 326–327, 460–463 (2003).
[CrossRef]

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

2002 (1)

B. Boulard, Y. Gao, “Vapor phase deposition of multicomponent fluoride glasses,” C. R. Chim. 5, 675–678 (2002).
[CrossRef]

2001 (1)

J.-L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287, 401–404 (2001).
[CrossRef]

1997 (1)

E. Josse, G. Fonteneau, J. Lucas, “Low-phonon waveguides made by F−/Cl− exchange on fluoride glasses,” Mater. Res. Bull. 32, 1139–1146 (1997).
[CrossRef]

1994 (1)

D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

1992 (1)

1986 (1)

1985 (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

Adam, J. L.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Adam, J.-L.

H. Haquin, G. Fonteneau, J.-L. Adam, “Recent developments in ion-exchanged fluoride glass planar waveguides,” J. Non-Cryst. Solids 326–327, 460–463 (2003).
[CrossRef]

J.-L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287, 401–404 (2001).
[CrossRef]

Bayart, D.

D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Beylat, J. L.

D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Boulard, B.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

B. Boulard, Y. Gao, “Vapor phase deposition of multicomponent fluoride glasses,” C. R. Chim. 5, 675–678 (2002).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Brannon, P. J.

Clesca, B.

D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Couchaud, M.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Duverger, C.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Fonteneau, G.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

H. Haquin, G. Fonteneau, J.-L. Adam, “Recent developments in ion-exchanged fluoride glass planar waveguides,” J. Non-Cryst. Solids 326–327, 460–463 (2003).
[CrossRef]

E. Josse, G. Fonteneau, J. Lucas, “Low-phonon waveguides made by F−/Cl− exchange on fluoride glasses,” Mater. Res. Bull. 32, 1139–1146 (1997).
[CrossRef]

Fulbert, L.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Gao, Y.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

B. Boulard, Y. Gao, “Vapor phase deposition of multicomponent fluoride glasses,” C. R. Chim. 5, 675–678 (2002).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Gupta, M. C.

Guy, S.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Hamon, L.

D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

Haquin, H.

H. Haquin, G. Fonteneau, J.-L. Adam, “Recent developments in ion-exchanged fluoride glass planar waveguides,” J. Non-Cryst. Solids 326–327, 460–463 (2003).
[CrossRef]

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Jacquier, B.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Josse, E.

E. Josse, G. Fonteneau, J. Lucas, “Low-phonon waveguides made by F−/Cl− exchange on fluoride glasses,” Mater. Res. Bull. 32, 1139–1146 (1997).
[CrossRef]

Lucas, J.

E. Josse, G. Fonteneau, J. Lucas, “Low-phonon waveguides made by F−/Cl− exchange on fluoride glasses,” Mater. Res. Bull. 32, 1139–1146 (1997).
[CrossRef]

Rabarot, M.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Strasser, T. A.

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Vasilief, I.

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

Walker, R. G.

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

Appl. Opt. (2)

C. R. Chim. (1)

B. Boulard, Y. Gao, “Vapor phase deposition of multicomponent fluoride glasses,” C. R. Chim. 5, 675–678 (2002).
[CrossRef]

Electron. Lett. (1)

R. G. Walker, “Simple and accurate loss measurement technique for semiconductor optical waveguides,” Electron. Lett. 21, 581–583 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Bayart, B. Clesca, L. Hamon, J. L. Beylat, “Experimental investigation of the gain flatness characteristics for 1.55 μm erbium-doped fluoride fiber amplifiers,” IEEE Photon. Technol. Lett. 6, 613–615 (1994).
[CrossRef]

J. Non-Cryst. Solids (2)

J.-L. Adam, “Non-oxide glasses and their applications in optics,” J. Non-Cryst. Solids 287, 401–404 (2001).
[CrossRef]

H. Haquin, G. Fonteneau, J.-L. Adam, “Recent developments in ion-exchanged fluoride glass planar waveguides,” J. Non-Cryst. Solids 326–327, 460–463 (2003).
[CrossRef]

Mater. Res. Bull. (1)

E. Josse, G. Fonteneau, J. Lucas, “Low-phonon waveguides made by F−/Cl− exchange on fluoride glasses,” Mater. Res. Bull. 32, 1139–1146 (1997).
[CrossRef]

Opt. Mater. (1)

I. Vasilief, S. Guy, B. Jacquier, H. Haquin, G. Fonteneau, J. L. Adam, M. Couchaud, L. Fulbert, M. Rabarot, B. Boulard, Y. Gao, C. Duverger, “Frequency modulation spectroscopy of erbium–cerium codoped fluoride glasses for optical amplifiers,” Opt. Mater. 24, 77–81 (2003).
[CrossRef]

Other (2)

Y. Gao, B. Boulard, M. Couchaud, I. Vasilief, S. Guy, C. Duverger, B. Jacquier, “Preparation by PVD of Er/Ce-doped PZG fluoride glass channel waveguide for integrated optical amplifiers at 1.5 μm,” Opt. Mater. doi: (2004).
[CrossRef]

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Near-field optical images of (a) a ZBAC:Er/Ce doped single-mode waveguide around 1.55 μm and (b) a PZG:Er doped multimode waveguide around 1.55 μm.

Fig. 2
Fig. 2

Experimental setup. For the loss measurements the source laser was an IR diode (Tunics), tunable around 1.5 μm; for amplification tests we used a 1.48 μm fiber pump diode that delivered a maximum output power of 400 mW. The two laser beams were coupled by means of a multiplexer (MUX). The light was launched into the waveguides with an IR microscope objective (f = 6 mm and a numerical aperture of 0.3). The light output is focused on a mirror normal to the propagation axis by use of a second identical microscope objective.

Fig. 3
Fig. 3

Gain values under 1.48 μm pumping on a ZBAC:Er/Ce codoped waveguide, performed with the double-pass technique. The gain is measured on the return pass for which launching efficiency is maximized. The signal power at 1.54 μm is equal to −40 dBm.

Fig. 4
Fig. 4

Gain measurements obtained with 1.48 μm pumping on a ZBAC:Er/Ce codoped waveguide of waist 9.4/7 μm and propagation losses of 0.6 dB/cm. The signal power at 1.54 μm is equal to −40 dBm. With the double-pass method the indicated pump power takes into account the percentage of light recoupled into the waveguide on the return pass, which is approximately 40% of the initial pump.

Tables (2)

Tables Icon

Table 1 Loss Measurements Obtained with the Double-Pass Technique for a PZGEr/Yb/Ce (0.7Er–1.8 Ce–2.1 Yb mol. %) Codoped 2 μm Thick Waveguidea

Tables Icon

Table 2 Net Gain Values Obtained with the Double-Pass Technique for a PZG:Er/Yb/Ce (0.7 Er–1.8 Ce–2.1 Yb mol. %) Codoped 2 μm Thick Waveguidea

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F glass - + HCl gas HF gas + Cl glass - .
I in - I out = 7 L Fresnel + 2 C + ( α + σ a N ) l guide ,
l guide × α + 2 C = 0.57 dB .
g net ( dB ) = g on - off - 2 C - α l guide - σ a N l guide .

Metrics