Abstract

The polishing performance of magnetorheological (MR) fluids prepared with a variety of magnetic and nonmagnetic ingredients was studied on four types of initial surface for chemical vapor deposition (CVD) ZnS flats from domestic and foreign sources. The results showed that it was possible to greatly improve smoothing performance of magnetorheological finishing (MRF) by altering the fluid composition, with the best results obtained for nanoalumina abrasive used with soft carbonyl iron and altered MR fluid chemistry. Surface roughness did not exceed 20 nm peak to valley and 2 nm rms after removal of 2 μm of material. The formation of orange peel and the exposure of a pebblelike structure inherent in ZnS from the CVD process were suppressed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Slater, “Infrared windows and domes materials; critical review and technology assessment,” (Advanced Materials and Processes Technology Information Analysis Center, Jan.2000), Vol. AMPT-18, pp. 1–36.
  2. H. H. Karow, Fabrication Methods for Precision Optics (Wiley, 1993), Chap. 2.
  3. C. S. Chang, J. L. He, Z. P. Lin, “The grain size effect on the empirically determined erosion resistance of CVD-ZnS,” Wear 255, 115–120 (2003).
    [CrossRef]
  4. K. L. Lewis, A. M. Pitt, J. A. Savage, “The mechanical properties of CVD-grown zinc sulfide and their dependence on the conditions of growth,” in Proceedings of the Ninth International Conference on Chemical Vapor Deposition. (Electrochemical Society, 1984), Vol. 84–6, pp. 530–545.
  5. S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).
  6. D. Golini, “Precision optics manufacturing using magnetorheological finishing (MRF),” in Proceedings of the Ninth International Conference on Production Engineering, Precision Science and Technology for the Perfect Surfaces, [Japan Society for Precision engineering (JSPE), 1999], pp. 132–137.
  7. S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.
  8. A. B. Shorey, S. D. Jacobs, W. I. Kordonski, R. F. Gans, “Experiments and observations regarding the mechanism of glass removal in magnetorhelogical finishing,” Appl. Opt. 40, 20–33 (2001).
    [CrossRef]
  9. J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
    [CrossRef]
  10. II–IV, Inc. 375 Saxonburg Boulward, Saxonburg, Pa. 16025.
  11. Research Institute of Synthetic Crystal, Beijing, China.
  12. Q22Y, commercial MRF machines manufactured by QED Technologies, 1040 University Ave, Rochester, N.Y. 146070.
  13. ZYGO GPIxpHR phase-shifting interferometer system, ZYGO Corporation, Middlefield, Conn. 06455.
  14. ZYGO New View5000 white light optical profilometer, ZYGO Corporation, Middlefield, Conn. 06455.
  15. New View 5000 setting for roughness measurements with a 20× objective, 20 μm bipolar scan length, 5.0% min/mod (minimum modulation), 7 min (minimum) area size, FDA (frequency domain analysis) resolutoin: high. The reported roughness values are an average of 8–10 measurements at different sites.
  16. Corning NetOptix, Inc., 69 Island Street, Keene, N.H. 03431.

2003

C. S. Chang, J. L. He, Z. P. Lin, “The grain size effect on the empirically determined erosion resistance of CVD-ZnS,” Wear 255, 115–120 (2003).
[CrossRef]

2001

1999

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

Arrasmith, S. R.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Bishop, T. D.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Chang, C. S.

C. S. Chang, J. L. He, Z. P. Lin, “The grain size effect on the empirically determined erosion resistance of CVD-ZnS,” Wear 255, 115–120 (2003).
[CrossRef]

DeGroote, J. E.

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
[CrossRef]

Dumas, P.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

Gans, R. F.

Golini, D.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

D. Golini, “Precision optics manufacturing using magnetorheological finishing (MRF),” in Proceedings of the Ninth International Conference on Production Engineering, Precision Science and Technology for the Perfect Surfaces, [Japan Society for Precision engineering (JSPE), 1999], pp. 132–137.

Gorodkin, S. R.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Gregg, L. L.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

He, J. L.

C. S. Chang, J. L. He, Z. P. Lin, “The grain size effect on the empirically determined erosion resistance of CVD-ZnS,” Wear 255, 115–120 (2003).
[CrossRef]

Hogan, S.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

Jacobs, S. D.

A. B. Shorey, S. D. Jacobs, W. I. Kordonski, R. F. Gans, “Experiments and observations regarding the mechanism of glass removal in magnetorhelogical finishing,” Appl. Opt. 40, 20–33 (2001).
[CrossRef]

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
[CrossRef]

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Karow, H. H.

H. H. Karow, Fabrication Methods for Precision Optics (Wiley, 1993), Chap. 2.

Kordonski, W. I.

A. B. Shorey, S. D. Jacobs, W. I. Kordonski, R. F. Gans, “Experiments and observations regarding the mechanism of glass removal in magnetorhelogical finishing,” Appl. Opt. 40, 20–33 (2001).
[CrossRef]

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Kozhinova, I. A.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
[CrossRef]

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Lewis, K. L.

K. L. Lewis, A. M. Pitt, J. A. Savage, “The mechanical properties of CVD-grown zinc sulfide and their dependence on the conditions of growth,” in Proceedings of the Ninth International Conference on Chemical Vapor Deposition. (Electrochemical Society, 1984), Vol. 84–6, pp. 530–545.

Lin, Z. P.

C. S. Chang, J. L. He, Z. P. Lin, “The grain size effect on the empirically determined erosion resistance of CVD-ZnS,” Wear 255, 115–120 (2003).
[CrossRef]

Pitt, A. M.

K. L. Lewis, A. M. Pitt, J. A. Savage, “The mechanical properties of CVD-grown zinc sulfide and their dependence on the conditions of growth,” in Proceedings of the Ninth International Conference on Chemical Vapor Deposition. (Electrochemical Society, 1984), Vol. 84–6, pp. 530–545.

Romanofsky, H. J.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
[CrossRef]

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Savage, J. A.

K. L. Lewis, A. M. Pitt, J. A. Savage, “The mechanical properties of CVD-grown zinc sulfide and their dependence on the conditions of growth,” in Proceedings of the Ninth International Conference on Chemical Vapor Deposition. (Electrochemical Society, 1984), Vol. 84–6, pp. 530–545.

Schoen, J. M.

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
[CrossRef]

Shorey, A. B.

A. B. Shorey, S. D. Jacobs, W. I. Kordonski, R. F. Gans, “Experiments and observations regarding the mechanism of glass removal in magnetorhelogical finishing,” Appl. Opt. 40, 20–33 (2001).
[CrossRef]

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

Slater, L.

L. Slater, “Infrared windows and domes materials; critical review and technology assessment,” (Advanced Materials and Processes Technology Information Analysis Center, Jan.2000), Vol. AMPT-18, pp. 1–36.

Am. Ceram. Soc. Bull.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, D. Golini, W. I. Kordonski, P. Dumas, S. Hogan, “Magnetorheological finishing (MRF): computer-controlled optics manufacturing,” Am. Ceram. Soc. Bull. 78(12), 42–48 (1999).

Appl. Opt.

Wear

C. S. Chang, J. L. He, Z. P. Lin, “The grain size effect on the empirically determined erosion resistance of CVD-ZnS,” Wear 255, 115–120 (2003).
[CrossRef]

Other

K. L. Lewis, A. M. Pitt, J. A. Savage, “The mechanical properties of CVD-grown zinc sulfide and their dependence on the conditions of growth,” in Proceedings of the Ninth International Conference on Chemical Vapor Deposition. (Electrochemical Society, 1984), Vol. 84–6, pp. 530–545.

L. Slater, “Infrared windows and domes materials; critical review and technology assessment,” (Advanced Materials and Processes Technology Information Analysis Center, Jan.2000), Vol. AMPT-18, pp. 1–36.

H. H. Karow, Fabrication Methods for Precision Optics (Wiley, 1993), Chap. 2.

D. Golini, “Precision optics manufacturing using magnetorheological finishing (MRF),” in Proceedings of the Ninth International Conference on Production Engineering, Precision Science and Technology for the Perfect Surfaces, [Japan Society for Precision engineering (JSPE), 1999], pp. 132–137.

S. D. Jacobs, S. R. Arrasmith, I. A. Kozhinova, S. R. Gorodkin, L. L. Gregg, H. J. Romanofsky, T. D. Bishop, A. B. Shorey, W. I. Kordonski, “Effects of changes in fluid composition on magnetorheological finishing (MRF) of glasses and crystals,” in Initiatives of Precision Engineering at the Beginning of a Millenium,Tenth International Conference on Precision Engineering (ICPE), I. Inasaki, ed., Yokohama, Japan, 18–20 July 2001, pp. 501–505.

J. E. DeGroote, H. J. Romanofsky, I. A. Kozhinova, J. M. Schoen, S. D. Jacobs, “Polishing of PMMA and other optical polymers with magnetorheological finishing,” in Optical Manufacturing and Testing V, H. P. Stahl, ed., Proc. SPIE5180, 123–134 (2004).
[CrossRef]

II–IV, Inc. 375 Saxonburg Boulward, Saxonburg, Pa. 16025.

Research Institute of Synthetic Crystal, Beijing, China.

Q22Y, commercial MRF machines manufactured by QED Technologies, 1040 University Ave, Rochester, N.Y. 146070.

ZYGO GPIxpHR phase-shifting interferometer system, ZYGO Corporation, Middlefield, Conn. 06455.

ZYGO New View5000 white light optical profilometer, ZYGO Corporation, Middlefield, Conn. 06455.

New View 5000 setting for roughness measurements with a 20× objective, 20 μm bipolar scan length, 5.0% min/mod (minimum modulation), 7 min (minimum) area size, FDA (frequency domain analysis) resolutoin: high. The reported roughness values are an average of 8–10 measurements at different sites.

Corning NetOptix, Inc., 69 Island Street, Keene, N.H. 03431.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Initial surface profile of a SPDT surface on CVD ZnS as used in this study.

Fig. 2
Fig. 2

Evolution of rms surface roughness with the amount of material removed during dc polishing of pitch-polished CVD ZnS with a hard CI-based fluid prepared with each of four different abrasives.

Fig. 3
Fig. 3

Removal rates and p–v surface roughness values measured after polishing out 1 μm of material with hard CI-based fluids prepared with four different abrasives. Approximate abrasive concentration is indicated in volume percent.

Fig. 4
Fig. 4

Laser interferometer images (40 mm aperture) and white-light interferometer intensity maps (2.5×, 7.2 mm × 5.4 mm field) for two opposite sides of a 20 mm thick CVD ZnS puck after polishing out 1.5 μm of material by a hard CI-based nanoalumina fluid.

Fig. 5
Fig. 5

Evolution of (a) p–v and (b) rms surface roughness (20× objective, no filter applied) with amount of material removed on an initially pitch-polished surface by use of two alumina-based MR fluids in phase 2: one with altered CI and the other with altered CI and altered chemistry.

Fig. 6
Fig. 6

White-light interferometer intensity map (2.5×, 2.8 mm × 2.1 mm field) for the surface after polishing out 2.5 μm of material by use of the fluid with altered CI and altered chemistry.

Fig. 7
Fig. 7

Evolution of (a) p–v and (b) rms surface roughness with the amount of material polished out for three types of initial surface, pitch-polished, ground, and SPDT, with the chemically altered, soft-CI MR fluid. (Domestic material from II–VI, Inc.).

Fig. 8
Fig. 8

PSD plots on a SPDT ZnS surface showing the removal of high-frequency diamond-turning grooves after polishing out 0.2 μm of material. Additional polishing reduced the power density of low-frequency artifacts by 10×.

Fig. 9
Fig. 9

Evolution of (a) rms and (b) p–v surface roughness with the amount of material removed for CVD ZnS from China with chemically altered, soft CI MR fluid. Two initial surfaces were used in the experiment: as provided and after in-house prepolishing on pitch.

Tables (1)

Tables Icon

Table 1 Abrasive Particles Used in MR Fluids for CVD ZnS Polishing

Metrics