Abstract

An optical diagnostic technique has been developed to measure the gas–liquid interfacial film thickness in microcapillary two-phase flows. The spatial frequencies from the multiscattering measured with a CCD camera are used to determine the slug diameter and film thickness. It is found that, with an optimized optical orientation angle, the spatial frequency method shows great accuracy in the measurements. To demonstrate the capability of the newly developed method, a validation experiment was conducted in water–air and water–honey mixture–air two-phase flows. We measured the spatial frequency variations when the microbubble and slug were pulsating by utilizing a highly accurate signal processing technique and a five-point interpolation method. This newly developed optical method is easy to implement, and it will be a useful technique for two-phase flow measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription