Abstract

An optical diagnostic technique has been developed to measure the gas–liquid interfacial film thickness in microcapillary two-phase flows. The spatial frequencies from the multiscattering measured with a CCD camera are used to determine the slug diameter and film thickness. It is found that, with an optimized optical orientation angle, the spatial frequency method shows great accuracy in the measurements. To demonstrate the capability of the newly developed method, a validation experiment was conducted in water–air and water–honey mixture–air two-phase flows. We measured the spatial frequency variations when the microbubble and slug were pulsating by utilizing a highly accurate signal processing technique and a five-point interpolation method. This newly developed optical method is easy to implement, and it will be a useful technique for two-phase flow measurements.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Sinton, D. Erickson, D. Li, “Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization,” Exp. Fluids 35, 178–187 (2003).
    [CrossRef]
  2. J. P. Longtin, C.-L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” Int. J. Heat Mass Transfer 40, 951–959 (1997).
    [CrossRef]
  3. O. Baghdassarian, H.-C. Chu, B. Tabbert, G. A. Williams, “Spectrum of luminescence from laser-induced bubbles in water and cryogenic liquids,” in Proceedings of the Fourth International Symposium on Cavitation, http://resolver.caltech.edu/CAV2001:session.A2.001 .
  4. A. Casner, J.-P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
    [CrossRef] [PubMed]
  5. P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
    [CrossRef] [PubMed]
  6. H.-H. Qiu, C. T. Hsu, “Minimum deviation of spatial frequency in large-particle sizing,” Appl. Opt. 37, 6787–6794 (1998).
    [CrossRef]
  7. H.-H. Qiu, “Eliminating high-order scattering effects in optical microbubble sizing,” J. Opt. Soc. Am. A 20, 690–697 (2003).
    [CrossRef]
  8. H. H. Qiu, M. Sommerfeld, F. Durst, “High-resolution data processing for phase-Doppler measurements in a complex two-phase flow,” Meas. Sci. Technol. 2, 455–463 (1991).
    [CrossRef]

2003 (3)

D. Sinton, D. Erickson, D. Li, “Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization,” Exp. Fluids 35, 178–187 (2003).
[CrossRef]

A. Casner, J.-P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

H.-H. Qiu, “Eliminating high-order scattering effects in optical microbubble sizing,” J. Opt. Soc. Am. A 20, 690–697 (2003).
[CrossRef]

2001 (1)

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

J. P. Longtin, C.-L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” Int. J. Heat Mass Transfer 40, 951–959 (1997).
[CrossRef]

1991 (1)

H. H. Qiu, M. Sommerfeld, F. Durst, “High-resolution data processing for phase-Doppler measurements in a complex two-phase flow,” Meas. Sci. Technol. 2, 455–463 (1991).
[CrossRef]

Allen, J. S.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Casner, A.

A. Casner, J.-P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

Chomas, J. E.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Dayton, P. A.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Delville, J.-P.

A. Casner, J.-P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

Durst, F.

H. H. Qiu, M. Sommerfeld, F. Durst, “High-resolution data processing for phase-Doppler measurements in a complex two-phase flow,” Meas. Sci. Technol. 2, 455–463 (1991).
[CrossRef]

Erickson, D.

D. Sinton, D. Erickson, D. Li, “Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization,” Exp. Fluids 35, 178–187 (2003).
[CrossRef]

Ferrara, K. W.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Hsu, C. T.

Li, D.

D. Sinton, D. Erickson, D. Li, “Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization,” Exp. Fluids 35, 178–187 (2003).
[CrossRef]

Lindner, J. R.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Longtin, J. P.

J. P. Longtin, C.-L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” Int. J. Heat Mass Transfer 40, 951–959 (1997).
[CrossRef]

Lum, A. F. H.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Qiu, H. H.

H. H. Qiu, M. Sommerfeld, F. Durst, “High-resolution data processing for phase-Doppler measurements in a complex two-phase flow,” Meas. Sci. Technol. 2, 455–463 (1991).
[CrossRef]

Qiu, H.-H.

Simon, S. I.

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Sinton, D.

D. Sinton, D. Erickson, D. Li, “Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization,” Exp. Fluids 35, 178–187 (2003).
[CrossRef]

Sommerfeld, M.

H. H. Qiu, M. Sommerfeld, F. Durst, “High-resolution data processing for phase-Doppler measurements in a complex two-phase flow,” Meas. Sci. Technol. 2, 455–463 (1991).
[CrossRef]

Tien, C.-L.

J. P. Longtin, C.-L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” Int. J. Heat Mass Transfer 40, 951–959 (1997).
[CrossRef]

Appl. Opt. (1)

Biophys. J. (1)

P. A. Dayton, J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, K. W. Ferrara, “Optical and acoustical dynamics of microbubble contrast agents inside neutrophils,” Biophys. J. 80, 1547–1556 (2001).
[CrossRef] [PubMed]

Exp. Fluids (1)

D. Sinton, D. Erickson, D. Li, “Microbubble lensing-induced photobleaching (μ-BLIP) with application to microflow visualization,” Exp. Fluids 35, 178–187 (2003).
[CrossRef]

Int. J. Heat Mass Transfer (1)

J. P. Longtin, C.-L. Tien, “Efficient laser heating of transparent liquids using multiphoton absorption,” Int. J. Heat Mass Transfer 40, 951–959 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Meas. Sci. Technol. (1)

H. H. Qiu, M. Sommerfeld, F. Durst, “High-resolution data processing for phase-Doppler measurements in a complex two-phase flow,” Meas. Sci. Technol. 2, 455–463 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

A. Casner, J.-P. Delville, “Laser-induced hydrodynamic instability of fluid interfaces,” Phys. Rev. Lett. 90, 144503 (2003).
[CrossRef] [PubMed]

Other (1)

O. Baghdassarian, H.-C. Chu, B. Tabbert, G. A. Williams, “Spectrum of luminescence from laser-induced bubbles in water and cryogenic liquids,” in Proceedings of the Fourth International Symposium on Cavitation, http://resolver.caltech.edu/CAV2001:session.A2.001 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of gas–liquid interfacial film while a bubble passes through a microtube.

Fig. 2
Fig. 2

Schematic of a geometrical optics approach of scattering rays from a bubble slug.

Fig. 3
Fig. 3

Relationship of dα ~ θ and dβ ~ θ: (a) water–air bubble slug and (b) 70% water and 30% honey–air bubble slug.

Fig. 4
Fig. 4

Relationship of φ ~ θ: (a) water–air bubble slug and (b) 70% water and 30% honey–air bubble slug.

Fig. 5
Fig. 5

Relationship of β ~ θ: (a) water–air bubble slug and (b) 70% water and 30% honey–air bubble slug.

Fig. 6
Fig. 6

Schematic diagram for measurement of the gas–liquid interfacial film thickness.

Fig. 7
Fig. 7

Fringe pattern and its FFT power spectra of a hollow tube case.

Fig. 8
Fig. 8

Fringe pattern and its FFT power spectra of a water–air slug.

Fig. 9
Fig. 9

Fringe pattern and its FFT power spectra of a water and honey mixture–air bubble slug.

Fig. 10
Fig. 10

Measured film thickness of a slowly moving water–air bubble slug in a capillary tube.

Fig. 11
Fig. 11

Measured film thickness of a quick-moving water–air bubble slug.

Fig. 12
Fig. 12

Measured film thickness of slowly moving slugs: (a) 70% water and honey mixture–air bubble slug and (b) baby oil–air bubble slug.

Tables (1)

Tables Icon

Table 1 Measured Results of Liquid Film Thickness

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

α = 2 θ             when h = 0 or n l = n g ,
β = 2 φ - 2 θ r + 2 θ             when h 0 ,
d α = 2 d θ ,
d β = 2 d φ - 2 d θ r + 2 d θ .
φ = arcsin ( R R B n g n l sin θ ) ,
θ r = arcsin ( n g n l sin θ ) ,
d β = 2 c [ cos θ ( R B 2 R 2 - c 2 sin 2 θ ) 1 / 2 - cos θ ( 1 - c 2 sin 2 θ ) 1 / 2 + 1 c ] d θ .
d θ = δ R cos θ .
Δ β = 2 c δ [ 1 ( R B 2 - c 2 R 2 sin 2 θ ) 1 / 2 - 1 ( R 2 - c 2 R 2 sin 2 θ ) 1 / 2 + 1 c R cos θ ] .
h = R - ( { c 2 R 2 sin 2 θ + 1 [ 1 2 c δ L f + 1 ( R 2 - c 2 R 2 sin 2 θ ) 1 / 2 - 1 c R cos θ ] 2 } 1 / 2 ) ,
1 L = 2 δ R cos ( β / 2 ) f 0 .
h = R - R ( { c 2 sin 2 θ + 1 [ 1 c cos ( β / 2 ) f 0 f + 1 ( 1 - c 2 sin 2 θ ) 1 / 2 - 1 c cos θ ] 2 } 1 / 2 ) .
R p = tan 2 ( θ 1 - θ 2 ) tan 2 ( θ 1 + θ 2 ) .
h i = R - R ( { c 2 sin 2 θ + 1 [ 1 c cos ( β / 2 ) f 0 f i + 1 ( 1 - c 2 sin 2 θ ) 1 / 2 - 1 c cos θ ] 2 } 1 / 2 ) ,

Metrics