Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Supergridded cone-beam reconstruction and its application to point-spread function calculation

Not Accessible

Your library or personal account may give you access

Abstract

In cone-beam computed tomography (CBCT), the volumetric reconstruction may in principle assume an arbitrarily fine grid. The supergridded cone-beam reconstruction refers to reconstructing the object domain or a subvolume thereof with a grid that is finer than the proper computed tomography sampling grid (as determined by gantry geometry and detector discreteness). This technique can naturally reduce the voxelization effect, thereby retaining more details for object reproduction. The grid refinement is usually limited to two or three refinement levels because the detail pursuit is eventually limited by the detector discreteness. The volume reconstruction is usually targeted to a local volume of interest due to the cubic growth in a three-dimensional (3D) array size. As an application, we used this technique for 3D point-spread function (PSF) measurement of a CBCT system by reconstructing edge spread profiles in a refined grid. Through an experiment with a Teflon ball on a CBCT system, we demonstrated the supergridded volume reconstruction (based on a Feldcamp algorithm) and the CBCT PSF measurement (based on an edge-blurring technique). In comparison with a postreconstruction image refinement technique (upsampling and interpolation), the supergridded reconstruction could produce better PSFs (in terms of a smaller FWHM and PSF fitting error).

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Compensating the intensity fall-off effect in cone-beam tomography by an empirical weight formula

Zikuan Chen, Vince D. Calhoun, and Shengjiang Chang
Appl. Opt. 47(32) 6033-6039 (2008)

Improvement of transcutaneous fluorescent images with a depth-dependent point-spread function

Koichi Shimizu, Koji Tochio, and Yuji Kato
Appl. Opt. 44(11) 2154-2161 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved