Abstract

The threshold concentration for In2O3 was found in In:Mn:Fe:LiNbO3 crystals by measurement of the infrared spectra of the crystals. The resistance of the In:Mn:Fe:LiNbO3 crystals to optical damage is characterized by changes in photoinduced birefringence as well as by distortion of the transmitted beam pattern. The resistance increases remarkably when the concentration of In2O3 exceeds its threshold. The resistance to optical damage of a In(3.0 mol. %):Mn:Fe:LiNbO3 crystal is 2 orders of magnitude higher that of a Mn:Fe:LiNbO3 crystal. The dependence of defects on the resistance to optical damage of the In:Mn:Fe:LiNbO3 crystals is discussed in detail. Nonvolatile holographic storage was achieved for all crystals, and the sensitivity of the In(3.0 mol. %):Mn:Fe:LiNbO3 crystal is much higher than that of the others.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
    [CrossRef]
  2. R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
    [CrossRef]
  3. K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  4. D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
    [CrossRef]
  5. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  6. L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
    [CrossRef]
  7. G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
    [CrossRef]
  8. N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
    [CrossRef]
  9. T. R. Volk, V. I. Pryalkin, N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990).
    [CrossRef] [PubMed]
  10. T. R. Volk, N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. 14, 37–43 (1992).
    [CrossRef]
  11. Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
    [CrossRef]
  12. J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
    [CrossRef]
  13. Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
    [CrossRef]
  14. T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
    [CrossRef]
  15. M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
    [CrossRef]
  16. X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
    [CrossRef]
  17. Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
    [CrossRef]
  18. S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. B 42, 61–68 (1986).
    [CrossRef]
  19. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
    [CrossRef]
  20. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
    [CrossRef]
  21. T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
    [CrossRef]
  22. T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
    [CrossRef]
  23. P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1987).
  24. A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
    [CrossRef]
  25. H. Kogelnik, “Coupled wave theory for thick holograms gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]

2003

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

2002

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

2001

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

2000

1998

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

1995

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[CrossRef]

Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

1994

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

1992

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

T. R. Volk, N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. 14, 37–43 (1992).
[CrossRef]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

1990

1989

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
[CrossRef]

1986

S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. B 42, 61–68 (1986).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick holograms gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Abrahams, S. C.

S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. B 42, 61–68 (1986).
[CrossRef]

Adibi, A.

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Aillerie, M.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

Almási, G.

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

Arizmendi, L.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Asano, H.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bourson, P.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

Böwer, R.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Buse, K.

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Cabrera, J. M.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Catlow, C. R. A.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
[CrossRef]

Chah, K.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

Coufal, H. J.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
[CrossRef]

Deng, J. C.

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Donnerberg, H.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Fischer, C.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Fontana, M.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

Furukawa, Y.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

Hayashi, T.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Hebling, J.

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

Iyi, N.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[CrossRef]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Izumi, F.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jermann, F.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Kimura, S.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[CrossRef]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kitamura, K.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick holograms gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Kong, Y.

Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Kong, Y. F.

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Liu, D. A.

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Liu, L. R.

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Liu, S. M.

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Liu, Y. W.

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Marsh, P.

S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. B 42, 61–68 (1986).
[CrossRef]

Maximov, B.

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

Minakata, M.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

Mouras, R.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

Müller, R.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Pálfalvi, L.

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

Péter, A.

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

Polgár, K.

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

Pryalkin, V. I.

Psaltis, D.

A. Adibi, K. Buse, D. Psaltis, “Sensitivity improvement in two-center holographic recording,” Opt. Lett. 25, 539–541 (2000).
[CrossRef]

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
[CrossRef]

Razumovski, N. V.

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Rubinina, N.

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Rubinina, N. M.

T. R. Volk, N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. 14, 37–43 (1992).
[CrossRef]

T. R. Volk, V. I. Pryalkin, N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990).
[CrossRef] [PubMed]

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

Sato, M.

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

Schirmer, O. F.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
[CrossRef]

Sincerbox, G. T.

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Sulyanov, S.

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

Sun, Q.

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Tomlinson, S. M.

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
[CrossRef]

Volk, T.

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Volk, T. R.

T. R. Volk, N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. 14, 37–43 (1992).
[CrossRef]

T. R. Volk, V. I. Pryalkin, N. M. Rubinina, “Optical-damage-resistant LiNbO3:Zn crystal,” Opt. Lett. 15, 996–998 (1990).
[CrossRef] [PubMed]

Wang, H.

Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Wang, H. F.

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Wen, J.

Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

Wen, J. K.

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Wöhlecke, M.

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

T. Volk, N. Rubinina, M. Wöhlecke, “Optical-damage-resistant impurities in lithium niobate,” J. Opt. Soc. Am. B 11, 1681–1687 (1994).
[CrossRef]

Xu, J. J.

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Xu, L. Y.

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Xu, W. S.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

Xu, Y. H.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

Yajima, Y.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

Yamamoto, J. K.

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Zhang, G. Q.

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Zhang, G. Y.

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Zhang, W. L.

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Zhao, C. Z.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

Zhao, L. C.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

Zhen, X. H.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

Zhou, C. H.

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Acta Crystallogr. B

S. C. Abrahams, P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr. B 42, 61–68 (1986).
[CrossRef]

Appl. Phys. A

T. Volk, M. Wöhlecke, N. Rubinina, N. V. Razumovski, F. Jermann, C. Fischer, R. Böwer, “LiNbO3 with the damage-resistant impurity indium,” Appl. Phys. A 60, 217–225 (1995).
[CrossRef]

Appl. Phys. Lett.

Y. Kong, J. Wen, H. Wang, “New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3:In,” Appl. Phys. Lett. 66, 280–281 (1995).
[CrossRef]

J. K. Yamamoto, K. Kitamura, N. Iyi, S. Kimura, Y. Furukawa, M. Sato, “Increased optical damage resistance in Sc2O3-dopedLiNbO3,” Appl. Phys. Lett. 61, 2156–2158 (1992).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, K. Polgár, “Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3,” Appl. Phys. Lett. 80, 2245–2247 (2002).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick holograms gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Cryst. Res. Technol.

X. H. Zhen, W. S. Xu, C. Z. Zhao, L. C. Zhao, Y. H. Xu, “Structure and photo-damage resistance of Li-rich LiNbO3 crystals co-doped with Zn2+/Er3,” Cryst. Res. Technol. 37, 976–982 (2002).
[CrossRef]

Ferroelectr. Lett.

T. R. Volk, N. M. Rubinina, “A new optical damage resistant impurity in lithium niobate crystals: indium,” Ferroelectr. Lett. 14, 37–43 (1992).
[CrossRef]

J. Appl. Phys.

G. Q. Zhang, G. Y. Zhang, S. M. Liu, J. J. Xu, Q. Sun, “The threshold effect of incident light intensity for the photorefractive light-induced scattering in LiNbO3:Fe, M (M = Mg2+, Zn2+, In3+) crystals,” J. Appl. Phys. 83, 4392–4396 (1998).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, Y. Yajima, M. Minakata, “Optical damage resistance and crystal quality of LiNbO3 single crystals with various Li/Nb ratios,” J. Appl. Phys. 72, 3250–3254 (1992).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

R. Müller, M. T. Santos, L. Arizmendi, J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D 27, 241–246 (1994).
[CrossRef]

J. Solid State Chem.

N. Iyi, K. Kitamura, Y. Yajima, S. Kimura, “Defect structure model of MgO-doped LiNbO3,” J. Solid State Chem. 118, 148–152 (1995).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Nature

K. Buse, A. Adibi, D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Commun.

D. A. Liu, L. R. Liu, Y. W. Liu, C. H. Zhou, L. Y. Xu, “Accumulative recording of nonvolatile photorefractive holograms in LiNbO3:Fe:Mn crystals,” Opt. Commun. 197, 187–192 (2001).
[CrossRef]

Opt. Lett.

Opt. Mater.

T. Volk, B. Maximov, S. Sulyanov, N. Rubinina, M. Wöhlecke, “Relation of the photorefraction and optical-damage resistance to the intrinsic defect structure in LiNbO3 crystals,” Opt. Mater. 23, 229–233 (2003).
[CrossRef]

M. Fontana, K. Chah, M. Aillerie, R. Mouras, P. Bourson, “Optical damage resistance in undoped LiNbO3 crystals,” Opt. Mater. 16, 111–117 (2001).
[CrossRef]

Phys. Lett. A

Y. F. Kong, J. C. Deng, W. L. Zhang, J. K. Wen, G. Y. Zhang, H. F. Wang, “OH− absorption spectra in doped lithium niobate crystals,” Phys. Lett. A 196, 128–132 (1994).
[CrossRef]

Phys. Rev. B

H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, O. F. Schirmer, “Computer-simulation studies of intrinsic defects in LiNbO3 crystals,” Phys. Rev. B 40, 11,909–11,916 (1989).
[CrossRef]

Other

H. J. Coufal, D. Psaltis, G. T. Sincerbox, Holographic Data Storage (Springer-Verlag, 2000).
[CrossRef]

P. Günter, J.-P. Huignard, eds., Photorefractive Materials and Their Applications I, Vol. 61 of Topics in Applied Physics (Springer-Verlag, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for nonvolatile holographic storage in the triply doped LiNbO3 crystals: M1–M3, mirrors; BS, beam splitter; S’s, shutters; D1, D2, detectors.

Fig. 2
Fig. 2

IR transmission spectra of the Mn:Fe:LiNbO3 and In:Mn:Fe:LiNbO3 crystals.

Fig. 3
Fig. 3

Optically induced change in birefringence (Δn) of the crystals irradiated with an Ar-laser beam (λ = 488.0 nm; 300 mW; beam spot size, 1.5 mm in diameter).

Fig. 4
Fig. 4

Transmitted laser beam distortions with Ar-laser irradiation at steady state (light intensity, 4.8 × 104 W/cm2) for equal irradiation times. Ar laser beams (a) without a crystal) and with crystals numbered (b) 1, (c) 2, (d) 3, and (e) 4.

Fig. 5
Fig. 5

Recording and fixing curves for the doped LiNbO3 crystals.

Tables (3)

Tables Icon

Table 1 Respective Composition of the Starting Material of Each of the LiNbO3 Crystals and Sizes of the Crystals

Tables Icon

Table 2 Ability (R) of Mn:Fe:LiNbO3 and In:Mn:Fe:LiNbO3 Crystals to Resist Optical Damage

Tables Icon

Table 3 Characteristic Parameters of Nonvolatile Holographic Storage in the Doped LiNbO3 Crystals (without Optimizing Experimental Conditions)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S = ( d η / d t ) t = 0 I Rec L .
S = β S = β ( d η / d t ) t = 0 I Rec L ,

Metrics