Abstract

The fabrication and testing of glass microlenses with rod and spherical shapes are described. The sizes of the lenses range from tens of micrometers to several millimeters. The surfaces of the lenses were fabricated by the melting method. These surfaces have been studied by several methods. The theoretical behavior of the lenses was investigated by ray tracing. Some applications of the lenses are presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. P. Herzig, ed., Microoptics—Elements, Systems and Applications (Taylor & Francis, 1998).
  2. N. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, 1999).
  3. Z. D. Popovic, R. A. Sprage, G. A. Neville-Connell, “Technique for the monolithic fabrication of microlens array,” Appl. Opt. 27, 1281–1284 (1984).
    [Crossref]
  4. E.-B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by the melting technology,” in Lithographic and Micro-machining Techniques for Optical Component Fabrication,E.-B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
    [Crossref]
  5. S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
    [Crossref]
  6. S. Calixto, M. Ornelas-Rodriguez, “Mid-infrared microlenses fabricated by the melting method,” Opt. Lett. 24, 1212–1214 (1999).
    [Crossref]
  7. S. Calixto, “Silicone microlenses and interference gratings,” Appl. Opt. 41, 3355–3361 (2002).
    [Crossref] [PubMed]
  8. D. M. Hartmann, O. Kibar, S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Opt. Lett. 25, 975–977 (2000).
    [Crossref]
  9. F. Vega, N. Lupon, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
    [Crossref]
  10. J. L. Ocana, A. Garcia-Beltran, F. Laguarta, J. Armengol, N. Lupon, F. Vega, “Laser heat treatment driven by integrated beams: role of irradiation nonuniformities,” Appl. Opt. 38, 4570–4576 (1999).
    [Crossref]
  11. M. Udrea, H. Orun, A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40, 2026–2030 (2001).
    [Crossref]
  12. J. Bartley, W. Goltsos, “Laser ablation of refractive microoptic lenslet arrays,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 140–145 (1991).
  13. M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
    [Crossref]
  14. V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
  15. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass like materials,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
    [Crossref]
  16. V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
    [Crossref]
  17. P. Veiko, Y. B. Yaklovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
    [Crossref]
  18. V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
    [Crossref]
  19. Ref. 1, p. 132.
  20. U. C. Paek, A. L. Weaver, “Formation of a spherical lens at optical fiber ends with a CO2 laser,” Appl. Opt. 14, 294–298 (1975).
    [Crossref] [PubMed]
  21. V. Russo, G. C. Righini, S. Sottini, S. Trigari, “Lens-ended fibers for medical applications: a new fabrication technique,” Appl. Opt. 23, 3277–3283 (1984).
    [Crossref] [PubMed]
  22. Schott Glass Technologies, http://www.us.schott.com/balllens .
  23. Edmund Industrial Optics, 101 East Gloucester Pike, Barrington, N.J. 08007.
  24. G. A. Valaskovic, M. Holton, G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt. 34, 1215–1228 (1995).
    [Crossref] [PubMed]
  25. R. Kingslake, Lens Design Fundamentals (Academic, 1978), p. 203.
  26. H. H. Hopkins, “Improvements in or relating to optical systems,” British patent954,629 (8April1964).
  27. Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
    [Crossref]
  28. B. T. Teipen, D. C. MacFarlane, “Modulation transfer function measurements of microjetted microlenses,” Appl. Opt. 38, 2040–2046 (1999).
    [Crossref]
  29. T. R. Jay, M. B. Stern, R. E. Knowlden, “Effect of refractive microlens array fabrication parameters on optical quality,” in Miniature and Micro-Optics: Fabrication and System Applications II,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 236–245 (1992).
  30. Ph. Nussbaum, H. P. Herzig, “Low numerical aperture refractive microlenses in fused silica,” Opt. Eng. 40, 1412–1414 (2001).
    [Crossref]

2002 (1)

2001 (2)

M. Udrea, H. Orun, A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40, 2026–2030 (2001).
[Crossref]

Ph. Nussbaum, H. P. Herzig, “Low numerical aperture refractive microlenses in fused silica,” Opt. Eng. 40, 1412–1414 (2001).
[Crossref]

2000 (2)

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

D. M. Hartmann, O. Kibar, S. C. Esener, “Characterization of a polymer microlens fabricated by use of the hydrophobic effect,” Opt. Lett. 25, 975–977 (2000).
[Crossref]

1999 (3)

1998 (2)

M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
[Crossref]

F. Vega, N. Lupon, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[Crossref]

1997 (1)

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

1995 (1)

1994 (1)

P. Veiko, Y. B. Yaklovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[Crossref]

1984 (2)

1975 (1)

Abbakumov, M. O.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Alacakir, A.

M. Udrea, H. Orun, A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40, 2026–2030 (2001).
[Crossref]

Armengol, J.

Bach-told, W.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Bartley, J.

J. Bartley, W. Goltsos, “Laser ablation of refractive microoptic lenslet arrays,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 140–145 (1991).

Borrelli, N.

N. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, 1999).

Calixto, S.

Cebrian, J. A.

F. Vega, N. Lupon, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[Crossref]

Chuiko, V. A.

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

Chujko, V. A.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Eisner, M.

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

Eitel, S.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Esener, S. C.

Fancey, S. J.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Fomichev, P. A.

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

Fomichov, P. A.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Frolov, V. V.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Fuchs, H. J.

E.-B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by the melting technology,” in Lithographic and Micro-machining Techniques for Optical Component Fabrication,E.-B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[Crossref]

Garcia-Beltran, A.

Gauggel, H. P.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Goltsos, W.

J. Bartley, W. Goltsos, “Laser ablation of refractive microoptic lenslet arrays,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 140–145 (1991).

Gulden, K. H.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Hartmann, D. M.

Haselbeck, S.

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

Herzig, H. P.

Ph. Nussbaum, H. P. Herzig, “Low numerical aperture refractive microlenses in fused silica,” Opt. Eng. 40, 1412–1414 (2001).
[Crossref]

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

Holton, M.

Hopkins, H. H.

H. H. Hopkins, “Improvements in or relating to optical systems,” British patent954,629 (8April1964).

Jay, T. R.

T. R. Jay, M. B. Stern, R. E. Knowlden, “Effect of refractive microlens array fabrication parameters on optical quality,” in Miniature and Micro-Optics: Fabrication and System Applications II,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 236–245 (1992).

Kanai, G.

Kibar, O.

Kilian, A.

E.-B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by the melting technology,” in Lithographic and Micro-machining Techniques for Optical Component Fabrication,E.-B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[Crossref]

Kingslake, R.

R. Kingslake, Lens Design Fundamentals (Academic, 1978), p. 203.

Kley, E.-B.

E.-B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by the melting technology,” in Lithographic and Micro-machining Techniques for Optical Component Fabrication,E.-B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[Crossref]

Knowlden, R. E.

T. R. Jay, M. B. Stern, R. E. Knowlden, “Effect of refractive microlens array fabrication parameters on optical quality,” in Miniature and Micro-Optics: Fabrication and System Applications II,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 236–245 (1992).

Komachi, Y.

Kostyuk, G. K.

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

Kromi, A. K.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Kromin, A. K.

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass like materials,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[Crossref]

Laguarta, F.

Lupon, N.

MacFarlane, D. C.

Metev, S. M.

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Morrison, G. H.

Neville-Connell, G. A.

Nussbaum, Ph.

Ph. Nussbaum, H. P. Herzig, “Low numerical aperture refractive microlenses in fused silica,” Opt. Eng. 40, 1412–1414 (2001).
[Crossref]

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

Ocana, J. L.

Ornelas-Rodriguez, M.

Orun, H.

M. Udrea, H. Orun, A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40, 2026–2030 (2001).
[Crossref]

Paek, U. C.

Pashin, V. F.

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Petrov, A.

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Popovic, Z. D.

Righini, G. C.

Russo, V.

Shakola, A. T.

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Sottini, S.

Sprage, R. A.

Stern, M. B.

T. R. Jay, M. B. Stern, R. E. Knowlden, “Effect of refractive microlens array fabrication parameters on optical quality,” in Miniature and Micro-Optics: Fabrication and System Applications II,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 236–245 (1992).

Taghizadeh, M. R.

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Teipen, B. T.

Trigari, S.

Udrea, M.

M. Udrea, H. Orun, A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40, 2026–2030 (2001).
[Crossref]

Valaskovic, G. A.

Vega, F.

Veiko, P.

P. Veiko, Y. B. Yaklovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[Crossref]

P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass like materials,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[Crossref]

Veiko, V. P.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Volkel, R.

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

Voznesenskaya, N. N.

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Voznesensky, N. B.

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Wakaki, M.

Weaver, A. L.

Wochnowski, C.

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Yaklovev, E. B.

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

Yaklovlev, Y. B.

P. Veiko, Y. B. Yaklovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[Crossref]

Yakovlev, E. B.

P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass like materials,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[Crossref]

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

Appl. Opt. (8)

IEEE Photon. Technol. Lett. (1)

S. Eitel, S. J. Fancey, H. P. Gauggel, K. H. Gulden, W. Bach-told, M. R. Taghizadeh, “Highly uniform vertical-cavity surface emitting lasers integrated with microlens arrays,” IEEE Photon. Technol. Lett. 12, 459–461 (2000).
[Crossref]

Opt. Eng. (4)

M. Udrea, H. Orun, A. Alacakir, “Laser polishing of optical fiber end surface,” Opt. Eng. 40, 2026–2030 (2001).
[Crossref]

P. Veiko, Y. B. Yaklovlev, “Physical fundamentals of laser forming of micro-optical components,” Opt. Eng. 33, 3567–3571 (1994).
[Crossref]

Ph. Nussbaum, H. P. Herzig, “Low numerical aperture refractive microlenses in fused silica,” Opt. Eng. 40, 1412–1414 (2001).
[Crossref]

F. Vega, N. Lupon, J. A. Cebrian, F. Laguarta, “Laser application for optical glass polishing,” Opt. Eng. 37, 272–279 (1998).
[Crossref]

Opt. Lett. (2)

Pure Appl. Opt. (1)

Ph. Nussbaum, R. Volkel, H. P. Herzig, M. Eisner, S. Haselbeck, “Design, fabrication and testing of microlenses arrays for sensors and microsystems,” Pure Appl. Opt. 6, 617–636 (1997).
[Crossref]

Other (14)

R. Kingslake, Lens Design Fundamentals (Academic, 1978), p. 203.

H. H. Hopkins, “Improvements in or relating to optical systems,” British patent954,629 (8April1964).

Schott Glass Technologies, http://www.us.schott.com/balllens .

Edmund Industrial Optics, 101 East Gloucester Pike, Barrington, N.J. 08007.

T. R. Jay, M. B. Stern, R. E. Knowlden, “Effect of refractive microlens array fabrication parameters on optical quality,” in Miniature and Micro-Optics: Fabrication and System Applications II,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1751, 236–245 (1992).

E.-B. Kley, H. J. Fuchs, A. Kilian, “Fabrication of glass lenses by the melting technology,” in Lithographic and Micro-machining Techniques for Optical Component Fabrication,E.-B. Kley, H. P. Herzig, eds., Proc. SPIE4440, 85–92 (2001).
[Crossref]

H. P. Herzig, ed., Microoptics—Elements, Systems and Applications (Taylor & Francis, 1998).

N. Borrelli, Microoptics Technology: Fabrication and Applications of Lens Arrays and Devices (Marcel Dekker, 1999).

V. P. Veiko, N. B. Voznesensky, A. Petrov, V. F. Pashin, N. N. Voznesenskaya, S. M. Metev, C. Wochnowski, “Optical interconnections optimization based on a classical approach,” in Photon Processing in Microelectronics and Photonics II, A. Pique et al., eds., Proc. SPIE4977, 569–577 (2003).
[Crossref]

Ref. 1, p. 132.

J. Bartley, W. Goltsos, “Laser ablation of refractive microoptic lenslet arrays,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 140–145 (1991).

V. P. Veiko, E. B. Yaklovev, V. V. Frolov, V. A. Chujko, A. K. Kromi, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass burning materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications,C. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).

P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass like materials,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[Crossref]

V. P. Veiko, V. A. Chuiko, P. A. Fomichev, G. K. Kostyuk, A. K. Kromin, A. T. Shakola, E. B. Yakovlev, “Laser technologies for miniature optical elements: approach and solutions,” in Miniature Micro-Optics and Micromechanics,N. C. Gallagher, C. Roychoudhuri, eds., Proc. SPIE1992, 114–127 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optical configuration used to melt the end surfaces of glass cylinders.

Fig. 2
Fig. 2

(a) Glass cylinder before the melting step. The distance between two consecutive marks in the scale is 100 μm. (b) Cylinder with a spherical lens. The parameters at melting time were the following: time of exposure, 200 ms; laser power, 18 W; defocus, 10% (f = 12.5 cm). (c) Spherical lens with a diameter of ~300 μm.

Fig. 3
Fig. 3

(a) Ends of rod cylinders with spherical shape. The diameter of the biggest cylinder is 1.2 mm. Parameters at recording time were as follows: time of exposure, 1 s; laser power, 30 W; defocus, 10% (f = 12.5 cm). (b) The cylinder at the left shows a surface that is not spherical because of improper exposure to the IR beam.

Fig. 4
Fig. 4

SEM photograph of a spherical lens.

Fig. 5
Fig. 5

(a) Deviation of a spherical lens profile with reference to the best-fitting circle. (b) Deviation of a rod lens profile with reference to the best-fitting circle.

Fig. 6
Fig. 6

Ends of two rod lenses illuminated by a light source composed of ends of optical fibers arranged in a circle. The rod lens in the upper part had a spherical surface. The rod in the lower part did not receive proper exposure during fabrication; this surface is not spherical.

Fig. 7
Fig. 7

(a) Optical configuration used to study the image produced by a microlens. Components not to scale. (b) Photograph of the image (element 5, group 7) produced by a spherical lens with 35 μm diameter. (c) Photograph produced by a spherical lens (150 μm diameter) of a pair of pliers ~18 cm long. (d) Photograph of the image produced by a rod lens of groups 6 and 7 of a USAF test target.

Fig. 8
Fig. 8

(a) Photograph taken with a microscope of group 5 of a USAF test target. (b) Photograph of group 5 obtained with a rod lens. (c) Photograph of the image of group 5 obtained with the rod lens when a pinhole of 600 μm diameter was placed before the lens.

Fig. 9
Fig. 9

Behavior of the image distance as a function of object distance, from each vertex of the spherical surface (a) for a spherical lens and (b) for a rod lens. Circles represent experimental data.

Fig. 10
Fig. 10

Schematic diagram showing the use of an iris to stop marginal rays.

Fig. 11
Fig. 11

MTF behavior. The parameter is the distance between the object and the first spherical surface of the lens. (a) MTF for a rod lens, (b) MTF for a spherical lens.

Fig. 12
Fig. 12

(a) Spherical lens used to collimate the light from the VCSEL in (b). (c) Image of the aperture of the VCSEL produced by the spherical lens. Notice that the aperture image has approximately the same size as the aperture in (b). (d) VCSEL aperture image when the VCSEL was in the ON state. (e) Unitary image given by a rod lens. Notice that one of the six VCSELs was in the OFF state.

Fig. 13
Fig. 13

Behavior of the image distance as a function of object distance for a rod lens.

Tables (2)

Tables Icon

Table 1 Deviation of the Measured Cross-Sectional Profile from a Spherical Curve

Tables Icon

Table 2 Image Resolution of Some Plano–Convex Lenses

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

W = ( 1 / 8 ) S I ,
S I = - A 2 h Δ ( u / n ) ,
LSA = S I 2 n u 2 ,
1 f = ( n L - 1 ) [ 1 R 1 - 1 R 2 + ( n L - 1 ) t n L R 1 R 2 ] ,
h 1 = - f ( n L - 1 ) t R 2 n L ,
h 2 = - f ( n L - 1 ) t R 1 n L ,
1 s oh 1 + 1 s ih 2 = 1 f ,
s oh 1 = s oV 1 + h 1 ,
s ih 2 = s iV 2 - h 2.
s iV 2 = f ( s oV 1 + h 1 ) s oV 1 + h 1 - f + h 2 .

Metrics