Abstract

Lower- and higher-order wave-front aberrations of soft contact lenses were accurately measured with a Shack–Hartmann wave-front sensor. The soft contact lenses were placed in a wet cell filled with lens solution to prevent surface deformation and desiccation during measurements. Aberration measurements of conventional toric and multifocal soft contact lenses and a customized soft contact lens have proved that this method is reliable. A Shack–Hartmann wave-front sensor can be used to assess optical quality of both conventional and customized soft contact lenses and to assist in enhancing lens quality control.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Bauer, “Longitudinal spherical aberration of modern ophthalmic lenses and its effect on visua acuity,” Appl. Opt. 19, 2226–2234 (1980).
    [CrossRef] [PubMed]
  2. D. Atchison, “Aberrations associated with rigid contact lenses,” J. Opt. Soc. Am. A 12, 2267–2273 (1995).
    [CrossRef]
  3. X. Hong, N. Himebaugh, L. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78, 872–880 (2001).
    [CrossRef]
  4. F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
    [CrossRef] [PubMed]
  5. J. Liang, B. Grimme, S. Goelz, J. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  6. J. Liang, D. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  7. J. Liang, D. Williams, D. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  8. R. Navarro, E. Moreno-Barriuso, S. Bara, T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
    [CrossRef]
  9. G. Yoon, T. M. Jeong, D. Williams, I. Cox, “Vision improvement by correcting higher-order aberrations with phase plates in normal eyes,” J. Refract. Surg. 20, S553–S557 (2004).
  10. N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).
  11. S. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
    [PubMed]
  12. G. Bauer, H. Lechner, “Measurement of the longitudinal spherical aberration of soft contact lenses,” Opt. Lett. 4, 224–226 (1979).
    [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 96–97.
  14. L. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
    [CrossRef] [PubMed]
  15. L. Thibos, R. Applegate, J. Schwiegerling, R. WebbVision Science and Its Applications Standards Taskforce members, “Standards for reporting optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.

2004 (1)

G. Yoon, T. M. Jeong, D. Williams, I. Cox, “Vision improvement by correcting higher-order aberrations with phase plates in normal eyes,” J. Refract. Surg. 20, S553–S557 (2004).

2003 (1)

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

2002 (1)

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

2001 (1)

X. Hong, N. Himebaugh, L. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78, 872–880 (2001).
[CrossRef]

2000 (2)

S. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

R. Navarro, E. Moreno-Barriuso, S. Bara, T. Mancebo, “Phase plates for wave-aberration compensation in the human eye,” Opt. Lett. 25, 236–238 (2000).
[CrossRef]

1997 (2)

1995 (1)

1994 (1)

1992 (1)

1980 (1)

1979 (1)

Applegate, R.

L. Thibos, R. Applegate, J. Schwiegerling, R. WebbVision Science and Its Applications Standards Taskforce members, “Standards for reporting optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.

Artal, P.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Atchison, D.

Bara, S.

Bauer, G.

Benito, A.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Bille, J.

Bradley, A.

Castejon-Mochon, J.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Chateau, N.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Cox, I.

G. Yoon, T. M. Jeong, D. Williams, I. Cox, “Vision improvement by correcting higher-order aberrations with phase plates in normal eyes,” J. Refract. Surg. 20, S553–S557 (2004).

Fermigier, B.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Goelz, S.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 96–97.

Grimme, B.

He, J.

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

Himebaugh, N.

X. Hong, N. Himebaugh, L. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78, 872–880 (2001).
[CrossRef]

Hong, X.

X. Hong, N. Himebaugh, L. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78, 872–880 (2001).
[CrossRef]

Jeong, T. M.

G. Yoon, T. M. Jeong, D. Williams, I. Cox, “Vision improvement by correcting higher-order aberrations with phase plates in normal eyes,” J. Refract. Surg. 20, S553–S557 (2004).

Joyeux, D.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Lechner, H.

Liang, J.

Lo-a-Foe, G.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Lopez-Gil, N.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Lu, F.

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

MacRae, S.

S. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

Mancebo, T.

Mao, X.

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

Marin, G.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Marin, J.

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

Miller, D.

Moreno-Barriuso, E.

Navarro, R.

Qu, J.

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

Schwiegerling, J.

S. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

L. Thibos, R. Applegate, J. Schwiegerling, R. WebbVision Science and Its Applications Standards Taskforce members, “Standards for reporting optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.

Snyder, R.

S. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

Thibos, L.

X. Hong, N. Himebaugh, L. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78, 872–880 (2001).
[CrossRef]

L. Thibos, M. Ye, X. Zhang, A. Bradley, “The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans,” Appl. Opt. 31, 3594–3600 (1992).
[CrossRef] [PubMed]

L. Thibos, R. Applegate, J. Schwiegerling, R. WebbVision Science and Its Applications Standards Taskforce members, “Standards for reporting optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.

Webb, R.

L. Thibos, R. Applegate, J. Schwiegerling, R. WebbVision Science and Its Applications Standards Taskforce members, “Standards for reporting optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.

Williams, D.

Xu, D.

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

Ye, M.

Yoon, G.

G. Yoon, T. M. Jeong, D. Williams, I. Cox, “Vision improvement by correcting higher-order aberrations with phase plates in normal eyes,” J. Refract. Surg. 20, S553–S557 (2004).

Zhang, X.

Appl. Opt. (2)

Invest. Ophthalmol. Visual Sci. (1)

N. Lopez-Gil, A. Benito, J. Castejon-Mochon, J. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Joyeux, N. Chateau, P. Artal, “Aberration correction using customized soft contact lenses with aspheric and asymmetric surfaces,” Invest. Ophthalmol. Visual Sci. 43, 973–973 (2002).

J. Opt. Soc. Am. A (4)

J. Refract. Surg. (2)

S. MacRae, J. Schwiegerling, R. Snyder, “Customized corneal ablation and super vision,” J. Refract. Surg. 16, S230–S235 (2000).
[PubMed]

G. Yoon, T. M. Jeong, D. Williams, I. Cox, “Vision improvement by correcting higher-order aberrations with phase plates in normal eyes,” J. Refract. Surg. 20, S553–S557 (2004).

Opt. Lett. (2)

Optom. Vis. Sci. (2)

X. Hong, N. Himebaugh, L. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vis. Sci. 78, 872–880 (2001).
[CrossRef]

F. Lu, X. Mao, J. Qu, D. Xu, J. He, “Monochromatic wave-front aberrations in the human eye with contact lenses,” Optom. Vis. Sci. 80, 135–141 (2003).
[CrossRef] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996), pp. 96–97.

L. Thibos, R. Applegate, J. Schwiegerling, R. WebbVision Science and Its Applications Standards Taskforce members, “Standards for reporting optical aberrations of eyes,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232–244.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical layout of a Shack–Hartmann sensor for measuring wave-front aberrations in contact lenses. The contact lens is placed in a wet cell to prevent surface deformation and desiccation during the measurement. The radial ring and three straight lines allow more-precise alignment to the optical axis of the system. The image of a contact lens was taken from the pupil camera.

Fig. 2
Fig. 2

Parameters used to compute the conversion factor described in the equations in the text.

Fig. 3
Fig. 3

Comparison of Zernike coefficients measured with a Shack–Hartmann sensor and with the commercial interferometer. The rms value of the difference in Zernike coefficients for the two instruments was 0.065 μm. This value is 1.4 times higher than that of a diffraction-limited rms. Thus the wave-front sensor is so reliable as to measure the wave-front aberrations in a contact lens.

Fig. 4
Fig. 4

(a) Zernike coefficients of three multifocal contact lenses for a 6 mm pupil size. (b) Spherical power of three multifocal contact lenses as a function of pupil size. The negative spherical power of the multifocal contact lenses increased with respect to the pupil size, and the designed refraction was obtained at a pupil size of approximately 5 mm.

Fig. 5
Fig. 5

(a) Higher-order wave-front maps for designed and measured Zernike coefficients of a customized contact lens. The interval between contour lines is 0.8 μm. (b) Higher-order Zernike coefficients of a customized contact lens for a 6 mm pupil size. The higher-order rms difference between the designed and measured Zernike coefficients was 0.26 μm for a 6 mm pupil.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ solution ( x , y ) = k W solution ( x , y ) = n medium k [ h - Δ ( x , y ) ] + n lens k Δ ( x , y ) = n medium k h + ( n lens - n medium ) k Δ ( x , y ) ,
W solution ( x , y ) = n medium h + ( n lens - n medium ) Δ ( x , y ) ,
ϕ air ( x , y ) = k W air ( x , y ) = k [ h - Δ ( x , y ) ] + n lens k Δ ( x , y ) = k h + ( n lens - 1 ) k Δ ( x , y ) ,
W air ( x , y ) = h + ( n lens - ) Δ ( x , y ) .
W air ( x , y ) = ( n lens - 1 ) / ( n lens - n medium ) × W solution ( x , y ) + C ,
C = h - ( n lens - 1 ) / ( n lens - n medium ) × n medium h .
W air ( x , y ) = C F × W solution ( x , y ) ,
C F = ( n lens - 1 ) / ( n lens - n medium ) .

Metrics