Abstract

The finite-difference time-domain (FDTD) method is used to compute propagation of light through textured uniaxial nematic-liquid crystal (NLC) films containing various types of twist disclination (defect) lines. Computational modeling by the FDTD method provides an accurate prediction of the optical response in multidimensional and multiscale heterogeneities in NLC films in which significant spatial optic axis gradients are present. The computations based on the FDTD method are compared with those of the classic Berreman matrix-type method. As expected, significant deviations between predictions from the two methods are observed near the twist disclination line defects because lateral optic axis gradients are ignored in the matrix Berreman method. It is shown that the failure of Berreman’s method to take into account lateral optic axis gradient effects leads to significant deviations in optical output. In addition, it is shown that the FDTD method is able to distinguish clearly different types of twist disclination lines. The FDTD optical simulation method can be used for understanding fundamental relationships between optical response and complex NLC defect textures in new liquid-crystal applications including liquid-crystal-based biosensors and rheo-optical characterization of flowing liquid crystals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription