D. K. Hwang, A. D. Rey, “Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,” Liq. Cryst. 32, 483–497 (2005).

[CrossRef]

A. F. Konstantinova, K. K. Konstantinov, B. V. Nabatov, E. A. Evdishchenko, “Modern application packages for rigorous solution of problems of light propagation in anisotropic media,” Crystallogr. Rep. 47, 645–652 (2002).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Influence of molecular-level interactions on the orientations of liquid crystals supported on nano-structured surfaces presenting specifically bound proteins,” Langmuir 17, 5595–5604 (2001).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical texture of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).

[CrossRef]

D. K. Yang, X. D. Mi, “Modelling of the reflection of cholesteric liquid crystals using the Jones matrix,” J. Phys. D 33, 672–676 (2000).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).

[CrossRef]

E. E. Kriezis, S. K. Filippov, S. J. Elston, “Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method,” J. Opt. A Pure Appl. Opt. 2, 27–33 (2000).

[CrossRef]

C. Gu, P. Yeh, “Extended Jones matrix method and its application in the analysis of compensators for liquid crystal displays,” Displays 20, 237–257 (1999).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).

[CrossRef]

V. K. Gupta, N. L. Abbott, “Using droplets of nematic liquid crystal to probe the microscopic and mesoscopic structure of organic surfaces,” Langmuir 15, 7213–7223 (1999).

[CrossRef]

A. Taflove, “Review of the formaulation and applications of the FDTD for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1998).

[CrossRef]

D. M. Sullivan, “An unsplit step 3-D PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 7, 184–186 (1997).

[CrossRef]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave. Lett. 6, 97–99 (1996).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

K. H. Yang, “Elimination of the Fabry–Perot effect in the 4 × 4 matrix method for inhomogeneous uniaxial media,” J. Appl. Phys. 68, 1550–1554 (1990).

[CrossRef]

A. M. J. Spruijt, “Twist-disclination line in planar oriented samples of liquid-crystals,” Solid State Commun. 13, 1919–1922 (1973).

[CrossRef]

J. Nehring, “Calculation of structure and energy of nematic threads,” Phy. Rev. A. 7, 1737–1748 (1973).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Influence of molecular-level interactions on the orientations of liquid crystals supported on nano-structured surfaces presenting specifically bound proteins,” Langmuir 17, 5595–5604 (2001).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical texture of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).

[CrossRef]

V. K. Gupta, N. L. Abbott, “Using droplets of nematic liquid crystal to probe the microscopic and mesoscopic structure of organic surfaces,” Langmuir 15, 7213–7223 (1999).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford U. Press, 1993).

E. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).

[CrossRef]

E. E. Kriezis, S. K. Filippov, S. J. Elston, “Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method,” J. Opt. A Pure Appl. Opt. 2, 27–33 (2000).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).

[CrossRef]

A. F. Konstantinova, K. K. Konstantinov, B. V. Nabatov, E. A. Evdishchenko, “Modern application packages for rigorous solution of problems of light propagation in anisotropic media,” Crystallogr. Rep. 47, 645–652 (2002).

[CrossRef]

E. E. Kriezis, S. K. Filippov, S. J. Elston, “Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method,” J. Opt. A Pure Appl. Opt. 2, 27–33 (2000).

[CrossRef]

C. Gu, P. Yeh, “Extended Jones matrix method and its application in the analysis of compensators for liquid crystal displays,” Displays 20, 237–257 (1999).

[CrossRef]

V. K. Gupta, N. L. Abbott, “Using droplets of nematic liquid crystal to probe the microscopic and mesoscopic structure of organic surfaces,” Langmuir 15, 7213–7223 (1999).

[CrossRef]

D. K. Hwang, A. D. Rey, “Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,” Liq. Cryst. 32, 483–497 (2005).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

M. Kleman, O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, 2002).

A. F. Konstantinova, K. K. Konstantinov, B. V. Nabatov, E. A. Evdishchenko, “Modern application packages for rigorous solution of problems of light propagation in anisotropic media,” Crystallogr. Rep. 47, 645–652 (2002).

[CrossRef]

A. F. Konstantinova, K. K. Konstantinov, B. V. Nabatov, E. A. Evdishchenko, “Modern application packages for rigorous solution of problems of light propagation in anisotropic media,” Crystallogr. Rep. 47, 645–652 (2002).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).

[CrossRef]

E. E. Kriezis, S. K. Filippov, S. J. Elston, “Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method,” J. Opt. A Pure Appl. Opt. 2, 27–33 (2000).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).

[CrossRef]

M. Kleman, O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, 2002).

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).

D. K. Yang, X. D. Mi, “Modelling of the reflection of cholesteric liquid crystals using the Jones matrix,” J. Phys. D 33, 672–676 (2000).

[CrossRef]

A. F. Konstantinova, K. K. Konstantinov, B. V. Nabatov, E. A. Evdishchenko, “Modern application packages for rigorous solution of problems of light propagation in anisotropic media,” Crystallogr. Rep. 47, 645–652 (2002).

[CrossRef]

J. Nehring, “Calculation of structure and energy of nematic threads,” Phy. Rev. A. 7, 1737–1748 (1973).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford U. Press, 1993).

D. K. Hwang, A. D. Rey, “Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,” Liq. Cryst. 32, 483–497 (2005).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Influence of molecular-level interactions on the orientations of liquid crystals supported on nano-structured surfaces presenting specifically bound proteins,” Langmuir 17, 5595–5604 (2001).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical texture of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).

[CrossRef]

A. M. J. Spruijt, “Twist-disclination line in planar oriented samples of liquid-crystals,” Solid State Commun. 13, 1919–1922 (1973).

[CrossRef]

D. M. Sullivan, “An unsplit step 3-D PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 7, 184–186 (1997).

[CrossRef]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave. Lett. 6, 97–99 (1996).

[CrossRef]

A. Taflove, “Review of the formaulation and applications of the FDTD for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1998).

[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

D. K. Yang, X. D. Mi, “Modelling of the reflection of cholesteric liquid crystals using the Jones matrix,” J. Phys. D 33, 672–676 (2000).

[CrossRef]

K. H. Yang, “Elimination of the Fabry–Perot effect in the 4 × 4 matrix method for inhomogeneous uniaxial media,” J. Appl. Phys. 68, 1550–1554 (1990).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

[CrossRef]

A. F. Konstantinova, K. K. Konstantinov, B. V. Nabatov, E. A. Evdishchenko, “Modern application packages for rigorous solution of problems of light propagation in anisotropic media,” Crystallogr. Rep. 47, 645–652 (2002).

[CrossRef]

C. Gu, P. Yeh, “Extended Jones matrix method and its application in the analysis of compensators for liquid crystal displays,” Displays 20, 237–257 (1999).

[CrossRef]

D. M. Sullivan, “An unsplit step 3-D PML for use with the FDTD method,” IEEE Microwave Guided Wave Lett. 7, 184–186 (1997).

[CrossRef]

D. M. Sullivan, “A simplified PML for use with the FDTD method,” IEEE Microwave Guided Wave. Lett. 6, 97–99 (1996).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966).

[CrossRef]

K. H. Yang, “Elimination of the Fabry–Perot effect in the 4 × 4 matrix method for inhomogeneous uniaxial media,” J. Appl. Phys. 68, 1550–1554 (1990).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996).

[CrossRef]

E. E. Kriezis, S. K. Filippov, S. J. Elston, “Light propagation in domain walls in ferroelectric liquid crystal devices by the finite-difference time-domain method,” J. Opt. A Pure Appl. Opt. 2, 27–33 (2000).

[CrossRef]

D. K. Yang, X. D. Mi, “Modelling of the reflection of cholesteric liquid crystals using the Jones matrix,” J. Phys. D 33, 672–676 (2000).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Influence of molecular-level interactions on the orientations of liquid crystals supported on nano-structured surfaces presenting specifically bound proteins,” Langmuir 17, 5595–5604 (2001).

[CrossRef]

J. J. Skaife, N. L. Abbott, “Quantitative interpretation of the optical texture of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens,” Langmuir 16, 3529–3536 (2000).

[CrossRef]

V. K. Gupta, N. L. Abbott, “Using droplets of nematic liquid crystal to probe the microscopic and mesoscopic structure of organic surfaces,” Langmuir 15, 7213–7223 (1999).

[CrossRef]

D. K. Hwang, A. D. Rey, “Computational modeling of light propagation in textured liquid crystals based on the finite-difference time-domain (FDTD) method,” Liq. Cryst. 32, 483–497 (2005).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for light wave propagation within liquid crystal devices,” Opt. Commun. 165, 99–105 (1999).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Light wave propagation in liquid crystal displays by the 2-D finite-difference time-domain method,” Opt. Commun. 177, 69–77 (2000).

[CrossRef]

J. R. Park, G. Ryu, J. Byun, H. Hwang, S. T. Kim, I. Kim, “Numerical modeling and simulation of a cholesteric liqud crystal polarizer,” Opt. Rev. 9, 207–212 (2002).

[CrossRef]

J. Nehring, “Calculation of structure and energy of nematic threads,” Phy. Rev. A. 7, 1737–1748 (1973).

[CrossRef]

A. M. J. Spruijt, “Twist-disclination line in planar oriented samples of liquid-crystals,” Solid State Commun. 13, 1919–1922 (1973).

[CrossRef]

A. Taflove, “Review of the formaulation and applications of the FDTD for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1998).

[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2000).

E. Lueder, Liquid Crystal Displays: Addressing Schemes and Electro-Optical Effects (Wiley, 2001).

M. Kleman, O. D. Lavrentovich, Soft Matter Physics: An Introduction (Springer-Verlag, 2002).

P. G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford U. Press, 1993).