Abstract

Polymer deposition is a serious problem associated with the etching of fused silica by use of inductively coupled plasma (ICP) technology, and it usually prevents further etching. We report an optimized etching condition under which no polymer deposition will occur for etching fused silica with ICP technology. Under the optimized etching condition, surfaces of the fabricated fused silica gratings are smooth and clean. Etch rate of fused silica is relatively high, and it demonstrates a linear relation between etched depth and working time. Results of the diffraction of gratings fabricated under the optimized etching condition match theoretical results well.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).
  2. A. G. Lopez, H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40, 2068–2075 (2001).
    [CrossRef]
  3. J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25, 381–383 (2000).
    [CrossRef]
  4. P. B. Mirkarimi, S. L. Baker, C. Montcalm, J. A. Folta, “Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes,” Appl. Opt. 40, 62–70 (2001).
    [CrossRef]
  5. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tünnermann, M. Jup, D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934–6938 (2003).
    [CrossRef] [PubMed]
  6. C. Zhou, L. Liu, “Numerical study of Dammann array illuminator,” Appl. Opt. 34, 5961–5969 (1995).
    [CrossRef] [PubMed]
  7. E. M. Strzelecka, G. D. Robinson, L. A. Coldren, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
    [CrossRef]
  8. H. Sankur, R. Hall, E. Motamedi, “Fabrication of microlens arrays by reactive ion milling,” in Miniaturized Systems with Micro-Optics and Micromechanics,M. E. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
    [CrossRef]
  9. Y. Fu, N. K. A. Bryan, “Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by focused-ion-beam milling for single-mode fiber coupling,” Appl. Opt. 40, 5872–5876 (2001).
    [CrossRef]
  10. C. Zhou, P. Xi, S. Zhao, “Phase gratings made with inductively coupled plasma technology,” in Photonic Devices and Algorithms for Computing III,K. M. Iftekharuddin, A. A. S. Awwal, eds., Proc. SPIE4470, 138–145 (2001).
    [CrossRef]
  11. M. Karlsson, F. Nikolajeff, “Transfer of micro-optical structures into GaAs by use of inductively coupled plasma dry etching,” Appl. Opt. 41, 902–908 (2000).
    [CrossRef]
  12. S. T. Jung, H. S. Song, H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Films, 341, 188–191 (1999).
    [CrossRef]
  13. R. J. Shul, G. B. McClellan, “Role of steady state fluorocarbon films in etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol. A 15, 1881–1889 (1997).
    [CrossRef]
  14. E. Gogolides, P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570–5584 (2000).
    [CrossRef]
  15. H. Doh, Y. Horiike, “Gas resident time effects on plasma parameters: comparison between Ar and C4F8,” Jpn. J. Appl. Phys. 40, 3419–3426 (2001).
    [CrossRef]
  16. M. Karlsson, F. Nikolajeff, “Transfer of micro-optical structures into GaAs by use of inductively coupled plasma dry etching,” Appl. Opt. 41, 902–908 (2002).
    [CrossRef] [PubMed]
  17. S. H. Park, H. Jeon, Y. J. Sung, G. Y. Yeom, “Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching,” Appl. Opt. 40, 3698–3702 (2001).
    [CrossRef]
  18. P. Xi, C. Zhou, E. Dai, L. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27, 228–230 (2002).
    [CrossRef]
  19. E. Dai, C. Zhou, P. Xi, L. Liu, “Multifunctional double-layered diffractive optical element,” Opt. Lett. 28, 1513–1515 (2003).
    [CrossRef] [PubMed]
  20. C. Zhou, J. Jia, L. Liu, “Circular Dammann grating,” Opt. Lett. 28, 2174–2176 (2003).
    [CrossRef] [PubMed]
  21. J. Jia, C. Zhou, X. Sun, L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112–2117 (2004).
    [CrossRef] [PubMed]
  22. C. J. Choi, O. S. Kwon, “Ar addition effect on mechanism of fluorocarbon ion formation in CF4/Ar inductively coupled plasma,” J. Vac. Sci. Technol. B 18, 811–819 (2000).
    [CrossRef]
  23. M. G. Moharam, D. A. Pommet, E. B. Grann, T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief dielectric gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]

2004 (1)

2003 (3)

2002 (2)

2001 (5)

2000 (4)

M. Karlsson, F. Nikolajeff, “Transfer of micro-optical structures into GaAs by use of inductively coupled plasma dry etching,” Appl. Opt. 41, 902–908 (2000).
[CrossRef]

J. N. Mait, A. Scherer, O. Dial, D. W. Prather, X. Gao, “Diffractive lens fabricated with binary features less than 60 nm,” Opt. Lett. 25, 381–383 (2000).
[CrossRef]

E. Gogolides, P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570–5584 (2000).
[CrossRef]

C. J. Choi, O. S. Kwon, “Ar addition effect on mechanism of fluorocarbon ion formation in CF4/Ar inductively coupled plasma,” J. Vac. Sci. Technol. B 18, 811–819 (2000).
[CrossRef]

1999 (1)

S. T. Jung, H. S. Song, H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Films, 341, 188–191 (1999).
[CrossRef]

1997 (2)

R. J. Shul, G. B. McClellan, “Role of steady state fluorocarbon films in etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol. A 15, 1881–1889 (1997).
[CrossRef]

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

1995 (2)

Baker, S. L.

Bryan, N. K. A.

Choi, C. J.

C. J. Choi, O. S. Kwon, “Ar addition effect on mechanism of fluorocarbon ion formation in CF4/Ar inductively coupled plasma,” J. Vac. Sci. Technol. B 18, 811–819 (2000).
[CrossRef]

Clausnitzer, T.

Coldren, L. A.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Craighead, H. G.

Dai, E.

Dial, O.

Doh, H.

H. Doh, Y. Horiike, “Gas resident time effects on plasma parameters: comparison between Ar and C4F8,” Jpn. J. Appl. Phys. 40, 3419–3426 (2001).
[CrossRef]

Folta, J. A.

Fu, Y.

Fuchs, H. J.

Gao, X.

Gaylord, T. K.

Gogolides, E.

E. Gogolides, P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570–5584 (2000).
[CrossRef]

Grann, E. B.

Hall, R.

H. Sankur, R. Hall, E. Motamedi, “Fabrication of microlens arrays by reactive ion milling,” in Miniaturized Systems with Micro-Optics and Micromechanics,M. E. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Horiike, Y.

H. Doh, Y. Horiike, “Gas resident time effects on plasma parameters: comparison between Ar and C4F8,” Jpn. J. Appl. Phys. 40, 3419–3426 (2001).
[CrossRef]

Jeon, H.

Jia, J.

Jung, S. T.

S. T. Jung, H. S. Song, H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Films, 341, 188–191 (1999).
[CrossRef]

Jup, M.

Karlsson, M.

Kim, H. S.

S. T. Jung, H. S. Song, H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Films, 341, 188–191 (1999).
[CrossRef]

Kley, E. B.

Kwon, O. S.

C. J. Choi, O. S. Kwon, “Ar addition effect on mechanism of fluorocarbon ion formation in CF4/Ar inductively coupled plasma,” J. Vac. Sci. Technol. B 18, 811–819 (2000).
[CrossRef]

Limpert, J.

Liu, L.

Lopez, A. G.

Mait, J. N.

McClellan, G. B.

R. J. Shul, G. B. McClellan, “Role of steady state fluorocarbon films in etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol. A 15, 1881–1889 (1997).
[CrossRef]

Mirkarimi, P. B.

Moharam, M. G.

Montcalm, C.

Motamedi, E.

H. Sankur, R. Hall, E. Motamedi, “Fabrication of microlens arrays by reactive ion milling,” in Miniaturized Systems with Micro-Optics and Micromechanics,M. E. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Nikolajeff, F.

Park, S. H.

Pommet, D. A.

Prather, D. W.

Ristau, D.

Robinson, G. D.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Sankur, H.

H. Sankur, R. Hall, E. Motamedi, “Fabrication of microlens arrays by reactive ion milling,” in Miniaturized Systems with Micro-Optics and Micromechanics,M. E. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Scherer, A.

Shul, R. J.

R. J. Shul, G. B. McClellan, “Role of steady state fluorocarbon films in etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol. A 15, 1881–1889 (1997).
[CrossRef]

Song, H. S.

S. T. Jung, H. S. Song, H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Films, 341, 188–191 (1999).
[CrossRef]

Strzelecka, E. M.

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Sun, X.

Sung, Y. J.

Tünnermann, A.

Turunen, J.

J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

Vauvert, P.

E. Gogolides, P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570–5584 (2000).
[CrossRef]

Wyrowski, F.

J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

Xi, P.

E. Dai, C. Zhou, P. Xi, L. Liu, “Multifunctional double-layered diffractive optical element,” Opt. Lett. 28, 1513–1515 (2003).
[CrossRef] [PubMed]

P. Xi, C. Zhou, E. Dai, L. Liu, “Generation of near-field hexagonal array illumination with a phase grating,” Opt. Lett. 27, 228–230 (2002).
[CrossRef]

C. Zhou, P. Xi, S. Zhao, “Phase gratings made with inductively coupled plasma technology,” in Photonic Devices and Algorithms for Computing III,K. M. Iftekharuddin, A. A. S. Awwal, eds., Proc. SPIE4470, 138–145 (2001).
[CrossRef]

Yeom, G. Y.

Zellmer, H.

Zhao, S.

C. Zhou, P. Xi, S. Zhao, “Phase gratings made with inductively coupled plasma technology,” in Photonic Devices and Algorithms for Computing III,K. M. Iftekharuddin, A. A. S. Awwal, eds., Proc. SPIE4470, 138–145 (2001).
[CrossRef]

Zhou, C.

Zöllner, K.

Appl. Opt. (9)

P. B. Mirkarimi, S. L. Baker, C. Montcalm, J. A. Folta, “Recovery of multilayer-coated Zerodur and ULE optics for extreme-ultraviolet lithography by recoating, reactive-ion etching, and wet-chemical processes,” Appl. Opt. 40, 62–70 (2001).
[CrossRef]

T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tünnermann, M. Jup, D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934–6938 (2003).
[CrossRef] [PubMed]

C. Zhou, L. Liu, “Numerical study of Dammann array illuminator,” Appl. Opt. 34, 5961–5969 (1995).
[CrossRef] [PubMed]

A. G. Lopez, H. G. Craighead, “Subwavelength surface-relief gratings fabricated by microcontact printing of self-assembled monolayers,” Appl. Opt. 40, 2068–2075 (2001).
[CrossRef]

Y. Fu, N. K. A. Bryan, “Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by focused-ion-beam milling for single-mode fiber coupling,” Appl. Opt. 40, 5872–5876 (2001).
[CrossRef]

M. Karlsson, F. Nikolajeff, “Transfer of micro-optical structures into GaAs by use of inductively coupled plasma dry etching,” Appl. Opt. 41, 902–908 (2000).
[CrossRef]

M. Karlsson, F. Nikolajeff, “Transfer of micro-optical structures into GaAs by use of inductively coupled plasma dry etching,” Appl. Opt. 41, 902–908 (2002).
[CrossRef] [PubMed]

S. H. Park, H. Jeon, Y. J. Sung, G. Y. Yeom, “Refractive sapphire microlenses fabricated by chlorine-based inductively coupled plasma etching,” Appl. Opt. 40, 3698–3702 (2001).
[CrossRef]

J. Jia, C. Zhou, X. Sun, L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112–2117 (2004).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

E. Gogolides, P. Vauvert, “Etching of SiO2 and Si in fluorocarbon plasma: a detailed surface model accounting for etching and deposition,” J. Appl. Phys. 88, 5570–5584 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. A (1)

R. J. Shul, G. B. McClellan, “Role of steady state fluorocarbon films in etching of silicon dioxide using CHF3 in an inductively coupled plasma reactor,” J. Vac. Sci. Technol. A 15, 1881–1889 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C. J. Choi, O. S. Kwon, “Ar addition effect on mechanism of fluorocarbon ion formation in CF4/Ar inductively coupled plasma,” J. Vac. Sci. Technol. B 18, 811–819 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Doh, Y. Horiike, “Gas resident time effects on plasma parameters: comparison between Ar and C4F8,” Jpn. J. Appl. Phys. 40, 3419–3426 (2001).
[CrossRef]

Microelectron. Eng. (1)

E. M. Strzelecka, G. D. Robinson, L. A. Coldren, “Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching,” Microelectron. Eng. 35, 385–388 (1997).
[CrossRef]

Opt. Lett. (4)

Thin Solid Films (1)

S. T. Jung, H. S. Song, H. S. Kim, “Inductively coupled plasma etching of SiO2 layers for planar lightwave circuits,” Thin Solid Films, 341, 188–191 (1999).
[CrossRef]

Other (3)

J. Turunen, F. Wyrowski, Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, 1997).

C. Zhou, P. Xi, S. Zhao, “Phase gratings made with inductively coupled plasma technology,” in Photonic Devices and Algorithms for Computing III,K. M. Iftekharuddin, A. A. S. Awwal, eds., Proc. SPIE4470, 138–145 (2001).
[CrossRef]

H. Sankur, R. Hall, E. Motamedi, “Fabrication of microlens arrays by reactive ion milling,” in Miniaturized Systems with Micro-Optics and Micromechanics,M. E. Motamedi, ed., Proc. SPIE2687, 150–155 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the ICP equipment.

Fig. 2
Fig. 2

Experimental relation between etched depth and the gas flow rates of O2 and Ar.

Fig. 3
Fig. 3

Profile of one phase grating with a period of 40 μm and a duty cycle of 1:2 that was etched into fused silica with the measured (with Taylor–Hobson surface equipment) depth of 4 μm.

Fig. 4
Fig. 4

Relation of etched depth to working time.

Fig. 5
Fig. 5

Profile of one phase grating with a period of 40 μm and a duty cycle of 1:2 that was etched into fused silica with a PR mask (measured with Taylor–Hobson Surfacet equipment).

Fig. 6
Fig. 6

(a) Cross-sectional and (b) top-surface images of a high-density surface-relief grating of 600 lines/mm captured with a scanning electron microscope.

Fig. 7
Fig. 7

(a) The diffraction spots generated by the etched grating and (b) the intensities of the diffraction spots.

Fig. 8
Fig. 8

Calculated diffraction efficiencies of the first-order diffraction spot of the grating versus the etched depth obtained with scalar optical theory (solid curve) and rigorous coupled-wave theory for TE-polarized incident light (filled squares) and for TM-polarized incident light (open squares). The grating has a period of 40 μm and a duty cycle of 1:2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ = P V / Q ,
I m = 4 sin 2 φ 2 sin 2 π m a ( m π ) 2 ,             m an integer , m 0 ,
I 0 = cos 2 ( φ / 2 ) ,
φ = 2 π ( n - 1 ) h λ ,

Metrics