Abstract

A transmission-type variable optical attenuator (VOA) based on a polymer-stabilized dual-frequency liquid crystal (PSDFLC) is demonstrated at λ = 1.55 µm. The VOA is highly transparent in the voltage-off state but scatters light in the voltage-on state. By using a birefringent beam displacer incorporated with half-wave plates, we can obtain a VOA that is polarization independent and that exhibits a 31 dB dynamic range. The polymer networks and dual-frequency effect together reduce the response time (rise + decay) of a 16 µm PSDFLC cell to 30 ms at room temperature and at a voltage of 24 Vrms.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
    [CrossRef]
  2. R. A. M. Hikmet, H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
    [CrossRef]
  3. S. T. Wu, D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  4. H. Ren, S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
    [CrossRef]
  5. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
    [CrossRef]
  6. R. A. Soref, D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device,” Opt. Lett. 5, 147–149 (1980).
    [CrossRef] [PubMed]
  7. E. G. Hanson, “Polarization-independent liquid-crystal optical attenuator for fiber-optics applications,” Appl. Opt. 21, 1342–1344 (1982).
    [CrossRef] [PubMed]
  8. K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
    [CrossRef]
  9. J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.
  10. C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
    [CrossRef]
  11. H. K. Bucher, R. T. Klingbiel, J. P. Van Meter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
    [CrossRef]
  12. M. Schadt, “Low-frequency dielectric relaxation in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. 89, 77–92 (1982).
    [CrossRef]
  13. F. Du, S. T. Wu, “Curing temperature effects on liquid crystal gels,” Appl. Phys. Lett. 83, 1310–1312 (2003).
    [CrossRef]
  14. F. Du, S. Gauza, S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003).
    [CrossRef] [PubMed]
  15. S. T. Wu, C. S. Wu, “High speed liquid crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
    [CrossRef]
  16. S. T. Wu, “A nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57, 986–988 (1990).
    [CrossRef]

2004

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

2003

2002

H. Ren, S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

2001

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

1995

R. A. M. Hikmet, H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

1990

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

S. T. Wu, “A nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57, 986–988 (1990).
[CrossRef]

1989

S. T. Wu, C. S. Wu, “High speed liquid crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[CrossRef]

1982

M. Schadt, “Low-frequency dielectric relaxation in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. 89, 77–92 (1982).
[CrossRef]

E. G. Hanson, “Polarization-independent liquid-crystal optical attenuator for fiber-optics applications,” Appl. Opt. 21, 1342–1344 (1982).
[CrossRef] [PubMed]

1980

1974

H. K. Bucher, R. T. Klingbiel, J. P. Van Meter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[CrossRef]

Amano, C.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Boots, H. J.

R. A. M. Hikmet, H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

Bucher, H. K.

H. K. Bucher, R. T. Klingbiel, J. P. Van Meter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[CrossRef]

Du, F.

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Feng, W.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

Gauza, S.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

F. Du, S. Gauza, S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003).
[CrossRef] [PubMed]

Hanson, E. G.

Hikmet, R. A. M.

R. A. M. Hikmet, H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Huang, T.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

Jiang, J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.

Klingbiel, R. T.

H. K. Bucher, R. T. Klingbiel, J. P. Van Meter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[CrossRef]

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Mao, C.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

McMahon, D. H.

Pan, J. J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.

Qiu, X.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.

Ren, H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

H. Ren, S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

Schadt, M.

M. Schadt, “Low-frequency dielectric relaxation in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. 89, 77–92 (1982).
[CrossRef]

Soref, R. A.

Van Meter, J. P.

H. K. Bucher, R. T. Klingbiel, J. P. Van Meter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[CrossRef]

Wada, M.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Wang, W.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.

Wu, C. S.

S. T. Wu, C. S. Wu, “High speed liquid crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[CrossRef]

Wu, H.

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.

Wu, J.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

Wu, K.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

Wu, S. T.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

F. Du, S. T. Wu, “Curing temperature effects on liquid crystal gels,” Appl. Phys. Lett. 83, 1310–1312 (2003).
[CrossRef]

F. Du, S. Gauza, S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003).
[CrossRef] [PubMed]

H. Ren, S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

S. T. Wu, “A nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57, 986–988 (1990).
[CrossRef]

S. T. Wu, C. S. Wu, “High speed liquid crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[CrossRef]

S. T. Wu, D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Xu, M.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

Yang, D. K.

S. T. Wu, D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

Appl. Opt.

Appl. Phys. Lett.

H. Ren, S. T. Wu, “Anisotropic liquid crystal gels for switchable polarizers and displays,” Appl. Phys. Lett. 81, 1432–1434 (2002).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

H. K. Bucher, R. T. Klingbiel, J. P. Van Meter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett. 25, 186–188 (1974).
[CrossRef]

F. Du, S. T. Wu, “Curing temperature effects on liquid crystal gels,” Appl. Phys. Lett. 83, 1310–1312 (2003).
[CrossRef]

S. T. Wu, “A nematic liquid crystal modulator with response time less than 100 μs at room temperature,” Appl. Phys. Lett. 57, 986–988 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Hirabayashi, M. Wada, C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

J. Appl. Phys.

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

S. T. Wu, C. S. Wu, “High speed liquid crystal modulators using transient nematic effect,” J. Appl. Phys. 65, 527–532 (1989).
[CrossRef]

Mol. Cryst. Liq. Cryst.

M. Schadt, “Low-frequency dielectric relaxation in nematics and dual-frequency addressing of field effects,” Mol. Cryst. Liq. Cryst. 89, 77–92 (1982).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

R. A. M. Hikmet, H. J. Boots, “Domain structure and switching behavior of anisotropic gels,” Phys. Rev. E 51, 5824–5831 (1995).
[CrossRef]

Other

S. T. Wu, D. K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).

J. J. Pan, H. Wu, W. Wang, X. Qiu, J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of the 19th National Fiber Optics Engineers Conference (Telcordia, 2003), pp. 943–949.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Light modulation mechanism of a PSDFLC cell. (a) At low-frequency (1 kHz), light scattering occurs for the extraordinary ray. (b) At high frequency (30 kHz), the device is highly transparent.

Fig. 2
Fig. 2

Polarization-independent PSDFLC-based VOA; HW, half-wave plate; BD, beam displacer; λ = 1.55 µm.

Fig. 3
Fig. 3

Voltage-dependent transmittance of a PSDFLC-based VOA with λ = 1.55 µm.

Fig. 4
Fig. 4

Wavelength-dependent attenuation ratio of the PSDFLC VOA.

Fig. 5
Fig. 5

Measured polarization-dependent loss (PDL) of the PSD-FLC VOA with d = 16 µm.

Fig. 6
Fig. 6

Curing-temperature-dependent response time of PSDFLC (circles) and PSLC (triangles) cells.

Metrics